Skip to main content
Log in

Imaging the Spatial Distribution of Microwave Intensity Using the Recombination Continuum Emitted by the Positive Column of the Cs–Xe DC Discharge

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We study experimentally the possibility of using the recombination continuum (RC) emitted by a nonequilibrium plasma of the positive column (PC) of a Cs–Xe discharge for real-time imaging of the spatial distribution of microwave intensity. A uniform plane slab of dense plasma of the PC of a Cs–Xe discharge with aperture 10×8 cm2 was used for the imaging. A continuous-wave (CW) magnetron was the microwave source with frequency 35.4 GHz and power up to 20 W. We measured the dependence of the RC intensity on the intensity of the microwaves incident on the plasma. Spatial distributions of the microwave intensity for a microwave beam and the H01 mode of a circular waveguide were imaged. The results of these experiments show that spatial distributions of microwave intensity measured using RC agree well with the distributions obtained using other methods. A temporal resolution of 10 μs was demonstrated and an energy-flux sensitivity of about 4·10-5 J/cm2 was achieved in the microwave-imaging experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. O. Kuznetsov and V. I. Malygin, Int. J. Infrared Millim. Waves, 12, No. 11, 1241 (1991).

    Google Scholar 

  2. N. L. Aleksandrov, A. V. Chirkov, and G. G. Denisov, Int. J. Infrared Millim. Waves, 18, No. 6, 1323 (1997).

    Google Scholar 

  3. M. K. Thumm and W. Kasparek, IEEE Trans. Plasma Sci., 30, No. 3, 755 (2002).

    Google Scholar 

  4. Idehara, I. Ogawa, S. Maeda, et al., Int. J. Infrared Millim. Waves, 23, No. 7, 973 (2002).

    Google Scholar 

  5. J.-C. Bolomey, IEEE Trans. Microwave Theory Tech., 37, No. 12, 2109 (1989).

    Google Scholar 

  6. L. V. Volkov, A. I. Voronko, A. R. Karapetyan, and S.A. Tikhomirov, Quantum Elektron., 32, No. 9, 835 (2002).

    Google Scholar 

  7. Yu. P. Timofeev and S.A. Fridman, Izv. Akad. Nauk SSSR, Ser. Fiz., 43, No. 6, 1303 (1979).

    Google Scholar 

  8. M. S. Gitlin, V. V. Zelenogorsky, and A. O. Perminov, Tech. Phys. Lett., 28, No. 6, 445 (2002).

    Google Scholar 

  9. N. A. Bogatov, M. S. Gitlin, D. A. Dikan, et al., Preprint No. 385 [in Russian], Inst. Appl. Phys. Press, Nizhny Novgorod (1995).

  10. L. Agnew and W. H. Reichelt, J. Appl. Phys., 39, No. 7, 3149 (1968).

    Google Scholar 

  11. B. Ya. Moizhes and G. E. Pikus, eds., Thermoemission Converters and Low-Temperature Plasma [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  12. J. M. Wetzer, Physica C, 123, 247 (1984).

    Google Scholar 

  13. L. M. Biberman, V. S. Vorobyev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. J. L. Lawless and D. Lo, Appl. Phys. B, 60, 391 (1995).

    Google Scholar 

  15. J. Pascale and J. Vandeplanque, J. Chem. Phys., 60, No. 6, 2278 (1974).

    Google Scholar 

  16. Yu. K. Zemtsov and E. P. Skorokhod, Opt. Spektrosk, 38, No. 3, 440 (1975).

    Google Scholar 

  17. S. R. Hunter, J. G. Carter, and L. G. Christophorou, Phys. Rev. A, 38, No. 11, 5539 (1988).

    Google Scholar 

  18. N. A. Bogatov, M. S. Gitlin, D. A. Dikan, et al., Phys. Rev. Lett., 79, No. 15, 2819 (1997).

    Google Scholar 

  19. J. H. Waszink and J. Polman, J. Appl. Phys., 40, No. 6, 2403 (1969).

    Google Scholar 

  20. A. L. Vikharev, V. B. Gil’denburg, A. V. Kim, et al., in: High-Frequency Discharge in Wave Field [in Russian], IAP RAS, Gorky (1988), p. 41.

    Google Scholar 

  21. I. V. Lebedev, Microwave Techniques and Devices [in Russian], 2, Vysshaya Shkola, Moscow (1970), p. 86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abubakirov, I.E., Gitlin, M.S. & Zelenogorsky, V.V. Imaging the Spatial Distribution of Microwave Intensity Using the Recombination Continuum Emitted by the Positive Column of the Cs–Xe DC Discharge. Radiophysics and Quantum Electronics 46, 722–728 (2003). https://doi.org/10.1023/B:RAQE.0000025004.59699.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RAQE.0000025004.59699.97

Keywords

Navigation