Skip to main content
Log in

Use of Synthetic Calcium Aluminosilicate for Immobilization of Radioactive Wastes

  • Published:
Radiochemistry Aims and scope

Abstract

Leaching rate, phase composition, specific surface area, pore volume, and pore size distribution of synthetic calcium aluminosilicate (SCAS) promising for immobilization of radioactive wastes was studied. The initial SCAS powder for forming monoliths was prepared by superadiabatic combustion of the charge containing fly ash of thermoelectric power stations and limestone. The monoliths were prepared from SCAS by two procedures: (1) solidification with water under common conditions with subsequent prolonged carbonation in air and (2) cold pressing of air-dry powder material. In the first case, a high-strength monolith was formed by filling of the pore volume with a mixture of calcium carbonate in various crystalline polymorphic modifications, and in the second case, by pozzolanic reaction of active silica with the products of β-dicalcium silicate hydration. It was found that, at contact with solution, the pores in the monolithic samples are filled with a calcium hydrosilicate gel decreasing their porosity and, in turn, leaching rate. SCAS matrices exceed special glasses and are close to some ceramic compositions in the safety of immobilization of alkali and alkaline-earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Handling and Processing of Radioactive Waste from Nuclear Applications, Tech. Rep. Ser., Vienna: IAEA, 2001, no. 402.

  2. Scientific and Technical Basis for Geological Disposal of Radioactive Wastes, Tech. Rep. Ser., Vienna: IAEA, 2003, no. 413.

  3. Chervonnyi, A.D. and Chervonnaya, N.A., Abstracts of Papers, XIV Rossiiskoe soveshchanie po eksperimental'noi mineralogii (XIV Russian Meet. on Experimental Mineralogy), Chernogolovka, October 2–4, 2001, p. 311.

  4. Chervonnyi, A.D. and Chervonnaya, N.A., Abstracts of Papers, XVIII Vserossiiskoe soveshchanie po vysokotemperaturnoi khimii silikatov i oksidov (XVIII Russian Meet. on High-Temperature Chemistry of Silicates and Oxides), St. Petersburg, November 19–21, 2002, p. 240.

  5. Chervonnyi, A.D. and Chervonnaya, N.A., Abstracts of Papers, XVIII Vserossiiskoe soveshchanie po vysokotemperaturnoi khimii silikatov i oksidov (XVIII Russian Meet. on High-Temperature Chemistry of Silicates and Oxides), St. Petersburg, November 19–21, 2002, p. 219.

  6. Chervonnyi, A.D. and Chervonnaia, N.A., Synthesis of Geopolymeric Cement by Superadiabatic Combustion of Compositions Based on Fly Ash, Proc. Geopolymer 2002 Turn Potential into Profit, Melbourne (Australia), October 28–29, 2002.

  7. Scheetz, B.E., Roy, D.M., and Grutzeck, M.W., Mat. Res. Innovat., 1999, vol. 3, pp. 55–65.

    Google Scholar 

  8. Shatalov, V.V., Byull. At. Energ., 2002, no. 7.

  9. GOST (State Standard) 29 114-91: Radioactive Wastes. Testing Procedures for Determination of the Chemical Stability of Solidified Radioactive Wastes by Prolonged Leaching.

  10. Hespe, E.D., At. Energy Rev., 1971, vol. 9, pp. 195–207.

    Google Scholar 

  11. Materials Characterization Center (MCC), Nuclear Waste Materials Habndbook, DOE/TIC 11 400, Richland: Pacific Northwest Lab., 1981.

    Google Scholar 

  12. ASTM C1220-98: Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Wastes.

  13. Chichagov, A.V., Varlamov, D.A., Dilanyan, R.A., et al., Kristallografiya, 2001, vol. 46,no. 5, pp. 950–954.

    Google Scholar 

  14. Lowell, S. and Shields, J.E., Powder Surface Area and Porosity, Chapman and Hall, 1984, 2nd ed.

  15. Chervonnyi, A.D., Chervonnaya, N.A., and Chukanov, N.V., Izv. Ross. Akad. Nauk, Neorg. Mater., 2003, vol. 39,no. 4, pp. 469–475.

    Google Scholar 

  16. Kiselev, A.V., Mezhmolekulyarnye vzaimodeistviya v adsorbtsii i khromatografii (Intermolecular Interactions in Adsorption and Chromatography), Moscow: Vysshaya Shklola, 1986.

    Google Scholar 

  17. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sov. Entsiklopediya, 1988.

  18. Benedict, R.W. and McFarlane, H.F., Radwaste Mag., 1998, no. 7, pp. 23–28.

    Google Scholar 

  19. Siemer, D.D., Mater. Res. Innovat., 2002, vol. 6, pp. 96–104.

    Google Scholar 

  20. Chervonnyi, A.D. and Chervonnaya, N.A., Izv. Ross. Akad. Nauk, Neorg. Mater., 2004, vol. 40 (in press).

  21. Gramenitskii, E.N., Kotel'nikov, A.R., Batanova, A.M., et al., Eksperimental'naya i tekhnicheskaya petrologiya (Experimental and Technical Petrology), Moscow: Nauchnyi Mir, 2000, p. 416.

    Google Scholar 

  22. Touse, S.A., Bier, T.A., Knepfler, C.A., et al., Mater. Res. Soc. Symp. Proc., 1989, vol. 137, pp. 449–456.

    Google Scholar 

  23. Nagataki, S. and Wu, C., Proc. 5th Int. Conf. “Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete,” Malhotra, V.M., Ed., Milwaukee (USA), 1995, pp. 1051–1068.

  24. Jiang, W. and Roy, D.M., Mater. Res. Soc. Symp. Proc., 1995, vol. 370, pp. 115–124.

    Google Scholar 

  25. Faucon, P. Adenot, F., Jacquinot, J.F., et al., Cem. Concr. Res., 1998, vol. 28,no. 6, pp. 847–857.

    Google Scholar 

  26. Andac, M. and Glasser, F.P., Cem. Concr. Res., 1999, vol. 29, pp. 179–186.

    Google Scholar 

  27. Haga, K., Shibata, M., Hironaga, M., et al., J. Nucl. Sci. Technol., 2002, vol. 39,no. 5, pp. 540–547.

    Google Scholar 

  28. Grutzeck, M.W., Mater. Res. Innovat., 1999, vol. 3, pp. 160–170.

    Google Scholar 

  29. Yu, P., Kirkpatrick, R.J., Poe, B., et al., J. Am. Ceram. Soc., 1999, vol. 82,no. 3, pp. 742–748.

    Google Scholar 

  30. Bagosi, S. and Csetenyi, L.J., Cem. Concr. Res., 1998, vol. 28,no. 12, pp. 1753–1759.

    Google Scholar 

  31. Chervonnyi, A.D. and Chervonnaya, N.A., Radiokhimiya, 2003, vol. 45,no. 2, pp. 165–172.

    Google Scholar 

  32. Scientific and Technical Basis for the Near Surface Disposal of Low and Intermediate Level Waste, Tech. Rep. Ser., Vienna: IAEA, 2002, no. 412.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chervonnyi, A.D., Chervonnaya, N.A. Use of Synthetic Calcium Aluminosilicate for Immobilization of Radioactive Wastes. Radiochemistry 46, 190–197 (2004). https://doi.org/10.1023/B:RACH.0000024950.03863.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RACH.0000024950.03863.c2

Keywords

Navigation