Skip to main content
Log in

Alternative Photosystem I-Driven Electron Transport Routes: Mechanisms and Functions

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In addition to the linear electron transport, several alternative Photosystem I-driven (PS I) electron pathways recycle the electrons to the intersystem electron carriers mediated by either ferredoxin:NADPH reductase, NAD(P)H dehydrogenase, or putative ferredoxin:plastoquinone reductase. The following functions have been proposed for these pathways: adjustment of ATP/NADPH ratio required for CO2 fixation, generation of the proton gradient for the down-regulation of Photosystem II (PS II), and ATP supply the active transport of inorganic carbon in algal cells. Unlike ferredoxin-dependent cyclic electron transport, the pathways supported by NAD(P)H can function in the dark and are likely involved in chlororespiratory-dependent energization of the thylakoid membrane. This energization may support carotenoid biosynthesis and/or maintain thylakoid ATPase in active state. Active operation of ferredoxin-dependent cyclic electron transport requires moderate reduction of both the intersystem electron carriers and the acceptor side of PS I, whereas the rate of NAD(P)H-dependent pathways under light depends largely on NAD(P)H accumulation in the stroma. Environmental stresses such as photoinhibition, high temperatures, drought, or high salinity stimulated the activity of alternative PS I-driven electron transport pathways. Thus, the energetic and regulatory functions of PS I-driven pathways must be an integral part of photosynthetic organisms and provides additional flexibility to environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertsson P-A (1995) The structure and function of the chloroplast photosynthetic membrane–a model for the domain organization. Photosynth Res 46: 141–149

    CAS  Google Scholar 

  • Allakhverdiev SA, Klimov VV and Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of Photosystem II against photoinhibition: influence of a new phenolic compound. Biochemistry 34: 4149–4154

    Google Scholar 

  • Arnon DI and Chain PK (1977) Regulation of ferredoxin-catalyzed photosynthetic photophosphorylation. Proc Natl Sci Acad USA 102: 133–138

    Google Scholar 

  • Asada K, Heber U and Schreiber U (1992) Pool size of electrons that can be donated to P700 + from stromal components via the intersystem chain. Plant Cell Physiol 33: 927–932

    CAS  Google Scholar 

  • Asada K, Schreiber U and Heber U (1993) Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts, as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiol 34: 39–50

    CAS  Google Scholar 

  • Backhausen JE, Kitzmann C, Horton P and Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchilly to prevent over-reduction and competition for electrons. Photosynth Res 64: 1–13

    PubMed  CAS  Google Scholar 

  • Baena-González E, Gray JC, Tyystjärvi, Aro E-M and Mäenpää P (2001) Abnormal regulation of photosynthetic electron transport in a chloroplast ycf9 inactivation mutant. J Biol Chem 276: 20795–20802

    PubMed  Google Scholar 

  • Baker NR (1991) A possible role for Photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81: 563–570

    CAS  Google Scholar 

  • Bendall DS and Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229: 23–38

    Google Scholar 

  • Bennoun P (1984) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79: 4352–4356

    Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial–plastid interaction in Chlamydomonas. Biochim Biophys Acta 1186: 59–66

    CAS  Google Scholar 

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. Biochim Biophys Acta 1506: 133–142

    PubMed  CAS  Google Scholar 

  • Berger S, Ellersiek U, Kinzelt D and Steinmüller K (1993a) Immunopuri cation of a subcomplex of the NAD(P) H-plastoquinone-oxidoreductase from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 326: 246–250

    PubMed  CAS  Google Scholar 

  • Berger S, Ellersiek U, Westho. P and Steinmüller K (1993b) Studies on the expression of NDH-H, a subunit of the NAD(P) H-plastoquinone-oxidoreductase of higher-plant chloroplasts. Planta 190: 25–31

    CAS  Google Scholar 

  • Bukhov NG, Mohanty P, Rakhimberdieva MG and Karapetyan NV (1992) Analysis of dark-relaxation kinetics of variable fluorescence in intact leaves. Planta 187: 122–127

    CAS  Google Scholar 

  • Bukhov NG, Boucher N and Carpentier R (1998) Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of excitation energy after mild heat treatment of barley leaves. Physiol Plant 104: 563–570

    CAS  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S and Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59: 81–93

    CAS  Google Scholar 

  • Bukhov NG, Samson G and Carpentier R (2000) Nonphoto-synthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady state rate. Photochem Photobiol 72: 351–357

    PubMed  CAS  Google Scholar 

  • Bukhov NG, Samson G and Carpentier R (2001a) Nonphoto-synthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. The pool size of stromal reductants. Photochem Photobiol 74: 438–443

    PubMed  CAS  Google Scholar 

  • Bukhov N, Carpentier Rand Samson G(2001b) Heterogeneity of Photosystem I reaction centers in barley leaves as related to the donationfromstromal reductants. Photosynth Res 70: 273–279

    PubMed  CAS  Google Scholar 

  • Bukhov NG, Egorova EA, Krendeleva TE, Rubin AB, Wiese C and Heber U (2001c) Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted leaves as influenced by the redox states of electron carriers. Photosynth Res 70: 155–166

    PubMed  CAS  Google Scholar 

  • Bukhov NG, Egorova EA and Carpentier R (2002) Electron flow to Photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing Photosystem I units. Planta 215: 812–820

    PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    PubMed  CAS  Google Scholar 

  • Canaani O, Schuster G and Ohad I (1989) Photoinhibition in Chlamidomonas reinhardtii: effect on state transition, inter-system energy distribution and Photosystem I cyclic electron flow. Photosynth Res 20: 129–146

    CAS  Google Scholar 

  • Carol P and Kuntz M (2001) A plastid terminal oxidase comes to light: implication for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6: 31–36

    PubMed  CAS  Google Scholar 

  • Carpentier R, LaRue B and Leblanc RM (1984) Photoacoustic spectroscopy of Anacystis nidulans: III. Detection of photosynthetic activities. Arch Biochem Biophys 228: 534–543

    PubMed  CAS  Google Scholar 

  • Carpentier R, Matthis HCP, Leblanc R and Hind G (1986) Monitoring energy conversion in Photosystem I of cyano-bacterial heterocysts by photoacoustic spectroscopy. Can J Phys 64: 1136–1138

    CAS  Google Scholar 

  • Casano LM, Zapata JM, Martín M and Sabater B (2000) Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275: 942–948

    PubMed  CAS  Google Scholar 

  • Chain RK and Arnon DI (1977) Quantum efficiency of photosynthetic energy conversion. Proc Natl Acad Sci USA 74: 3377–3381

    PubMed  CAS  Google Scholar 

  • Clarke JE and Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212: 808–816

    PubMed  CAS  Google Scholar 

  • Cleland RE and Bendall DS (1992) Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth Res 34: 409–418

    CAS  Google Scholar 

  • Corneille S, Cournac L, Guedeney G, Havaux M and Peltier G (1998) Reduction of the plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts. Characterization of a NAD(P) H-plastoquinone oxidoreductase activity. Biochim Biophys Acta 1361: 59–69

    Google Scholar 

  • Cornic G, Bukhov NG, Wiese C, Bligny R and Heber U (2000) Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of Photosystem I-dependent proton pumping. Planta 210: 468–477

    PubMed  CAS  Google Scholar 

  • Cournac L, Josse EM, Joet T, Rumeau D, Redding K, Kuntz Mand Peltier G (2000a) Flexibility in photosynthetic electron transport: a newly identi ed chloroplast oxidase involved in chlororespiration. Phil Trans R Soc London Ser B 355: 1447–1453

    CAS  Google Scholar 

  • Cournac L, Redding K, Ravanel J, Rumeau D, Josse EM, Kunts M and Peltier G (2000b) Electron flow between Photosystem II and oxygen in chloroplasts of Photosystem I-de cient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275: 17256–17262

    PubMed  CAS  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J and Peltier G (2002) In vivo interaction between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129: 1921–1928

    PubMed  CAS  Google Scholar 

  • Cuello J, Quiles MJ, Albacete ME and Sabater B (1995) Properties of a large complex with NADH dehydrogenase activity from barley thylakoids. Plant Cell Physiol 36: 265–271

    CAS  Google Scholar 

  • Davis DJ and San Pietro A (1977) Evidence for the role of sulfhydryl groups in a pH-dependent transition of ferredoxin: NADP + oxidoreductase. Arch BiochemBiophys 184: 572–577

    CAS  Google Scholar 

  • Delosme R, Béal D and Joliot P (1994) Photoacoustic detection of. ash-induced charge separation in photosynthetic systems. Spectral dependence of the quantum yield. Biochim Biophys Acta 1185: 56–64

    CAS  Google Scholar 

  • Delosme R, Olive J and Wollman F-A (1996) Changes in light energy distribution upon state transitions: an in vivo photoa-coustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273: 150–158

    Google Scholar 

  • Edwards GE and Walker DA (1983) C3, C4 Mechanisms, and Environmental Regulation of Photosynthesis. Blackwell Scientific, Oxford

    Google Scholar 

  • Endo T, Mi H, Shikanai T and Asada K (1997) Donation of electrons to plastoquinone by NAD(P) dehydrogenase and ferredoxin-quinone reductase in spinach chloroplasts. Plant Cell Physiol 38: 1272–1277

    CAS  Google Scholar 

  • Endo T, Shikanai T, Sato F and Asada K (1998) NAD(P) H dehydrogenase-dependent, antimycin A-sensitive electron donation to plastoquinone in tobacco chloroplasts. Plant Cell Physiol 39: 1226–1231

    CAS  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K and Sato F (1999) The role of chloroplastic NAD(P) H dehydrogenase in photoprotection. FEBS Lett 457: 5–8

    PubMed  CAS  Google Scholar 

  • Farineau J (1999) Study of the non-photochemical dark rise in chlorophyll fluorescence in pre-illuminated leaves of various C3 and C4 plants submitted to partial anaerobiosis. Plant Physiol Biochem 37: 911–918

    CAS  Google Scholar 

  • Feild TS, Nedbal L and Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sun flower leaves originates from chlororespiration. Plant Physiol 116: 1209–1218

    PubMed  CAS  Google Scholar 

  • Finazzi G, Furia A, Barbagallo RP and Forti G (1999) State transition, cyclic and linear electron transport and photophosphorylation in Chlamidomonas reinhardtii. Biochim Biophys Acta 1413: 117–129

    PubMed  CAS  Google Scholar 

  • Finazzi G, Barbagallo RP, Bergo E, Barbato R and Forti G (2001) Photoinhibition of Chlamydomonas reinhardtii in State 1 and State 2. Damages to the photosynthetic apparatus under linear and cyclic electron flow. J Biol Chem 276: 22251–22257

    PubMed  CAS  Google Scholar 

  • Flügge U-I and Heldt UW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Google Scholar 

  • Fork DC and Herbert SK (1993) Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36: 149–168

    CAS  Google Scholar 

  • Furbank RT and Horton P (1987) Regulation of photosynthesis in isolated barley protoplasts: the contribution of cyclic photophosphorylation. Biochim Biophys Acta 894: 332–338

    CAS  Google Scholar 

  • Gans P and Rébeillé F (1990) Control in the dark of the plastoquinone redox state by mitochondrial activity in Chlamydomonas reinhardtii. Biochim Biophys Acta 1015: 150–155

    CAS  Google Scholar 

  • Grohman L, Rasmusson AG, Heiser V, Thieck O and Brennicke A (1996) The NADH-binding subunit of respiratory chain complex I is nuclear-encoded in plants and identi ed only in mitochondria. Plant J 10: 793–803

    Google Scholar 

  • Groom OJ, Kramer DM, Crofts A and Ort DR (1993) The non-photochemical reduction of plastoquinone in leaves. Photosynth Res 36: 205–215

    CAS  Google Scholar 

  • Guedeney G, Corneille S, Cuine S and Peltier G (1996) Evidence for an association of ndhB, ndhJ gene products and ferredoxin NADP-reductase as components of a chloro-plastic NAD(P) H dehydrogenase complex. FEBS Lett 378: 277–280

    PubMed  CAS  Google Scholar 

  • Haldimann P and Strasser RJ (1999) Effects of anaerobiosis as probed by the polyphasic chlorophyll α fluorescence rise kinetic in pea (Pisum sativum L). Photosynth Res 62: 67–83

    CAS  Google Scholar 

  • Haldimann P and Tsmilii-Michael M (2002) Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll α fluorescence rise in spinach chloroplasts. Photosynth Res 74: 37–50

    PubMed  CAS  Google Scholar 

  • Harbinson J and Foyer CH (1991) Relationship between the efficiencies of Photosystems I and II and stromal redox state in CO2-free air. Evidence for cyclic electron flow in vivo. Plant Physiol 97: 41–49

    PubMed  CAS  Google Scholar 

  • Harris GC and Heber U (1993) Effect of anaerobiosis on chlorophyll fluorescence yield in spinach (Spinacia oleracea) leaf discs. Plant Physiol 101: 1169–1173

    PubMed  CAS  Google Scholar 

  • Havaux M (1992) Photoacoustic measurements of cyclic electron flow around Photosystem I in leaves adapted to light-states 1 and 2. Plant Cell Physiol 33: 799–803

    CAS  Google Scholar 

  • Havaux M (1996) Short-term responses of Photosystem I to heat stress. Induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47: 85–97

    CAS  Google Scholar 

  • Havaux M, Strasser RJ and Greppin H (1991) A theoretical and experimental analysis of the qP and qN coe. cients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27: 41–55

    CAS  Google Scholar 

  • Heber U and Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100: 1621–1626

    PubMed  CAS  Google Scholar 

  • Heber U, Egneus H, Hanck U, Jensen M and Köster S (1978) Regulation of photosynthetic electron transport and phosphorylation in intact chloroplasts and leaves of Spinacia oleracea. Planta 143: 41–49

    CAS  Google Scholar 

  • Heber U, Neimanis S, Siebke K, Schönknecht G and Katona E (1992) Chloroplast energization and oxidation of P700 /plastocyanin in illuminated leaves at reduced levels of CO2 or oxygen. Photosynth Res 34: 433–447

    CAS  Google Scholar 

  • Heber U, Bukhov NG, Neimanis S and Kobayashi Y (1995) Maximum H +/hvPSI stoichiometry of proton transport during cyclic electron flow in intact chloroplasts is at least two, but probably higher than two. Plant Cell Physiol 36: 1639–1647

    CAS  Google Scholar 

  • Herbert SK (2002) A new regulatory role for the chloroplast ATP synthase. Proc Natl Acad Sci USA 99: 12518–1251

    PubMed  CAS  Google Scholar 

  • Herbert SK, Fork DC and Malkin S (1990) Photoacoustic measurements in vivo of energy storage by cyclic electron flow in algae and higher plants. Plant Physiol 94: 926–934

    PubMed  CAS  Google Scholar 

  • Hibino T, Lee BH, Rai AK, Ishikawa H, Kojima H, Tawada M, Shimoyama H and Takabe T (1996) Salt enhances Photosystem I content and cyclic electron flow via NAD(P) H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica. Aust J Plant Physiol 23: 321–330

    Article  CAS  Google Scholar 

  • Hoefnagel MHN, Atkin OK and Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta 1366: 235–255

    CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    PubMed  CAS  Google Scholar 

  • Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G and Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123: 1337–1349

    PubMed  CAS  Google Scholar 

  • Irrgang K-D (1999) Architecture of the thylakoid membrane. In: Singal GS, Renger G, Sopory SK, Irrgang K-D and Govindjee (eds) Concepts in Photobiology. Photosynthesis and Photomorphogenesis, pp 139–180. Narosa Publishing House, New Delhi

    Google Scholar 

  • Ivanov B, Kobayashi Y, Bukhov NG and Heber U (1998) Photosystem I-dependent cyclic electron flow in intact spinach chloroplasts: occurrence, dependence on redox conditions and electron acceptors and inhibition by antimycin A. Photosynth Res 57: 61–70

    CAS  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Havaux M and Joset F (1993) Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34: 1073–1079

    CAS  Google Scholar 

  • Jeanjean R, Bedu S, Havaux M, Matthijs HCP and Joset F (1998) Salt-induced Photosystem I cyclic electron transfer restores growth on low inorganic carbon in a type 1 NAD(P) H dehydrogenase de cient mutant of Synechocystis PCC6803. FEMS Microbiol Lett 167: 131–137

    CAS  Google Scholar 

  • Joët T, Cournac L, Horvath EM, Medgyesy P and Peltier G (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for the participation of the NADH-dehydrogenase complex to cyclic electron flow around Photosystem I. Plant Physiol 125: 1919–1929

    PubMed  Google Scholar 

  • Joët T, Cournac L, Peltier G and Havaux M (2002a) Cyclic electron flow around Photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128: 760–769

    PubMed  Google Scholar 

  • Joët T, Genty B, Josse E-M, Kuntz M, Cournac L and Peltier G (2002b) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277: 31623–31630

    PubMed  Google Scholar 

  • Joliot P and Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99: 10209–10214

    PubMed  CAS  Google Scholar 

  • Joliot P, Lavergne J and Béal D (1992) Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with di. erent rates of photo-reduction. Biochim Biophys Acta 1101: 1–12

    CAS  Google Scholar 

  • Katona E, Neimanis S, Schonknnecht G and Heber U (1992) Photosystem I-dependent cyclic electron-transport is important in controlling Photosystem II activity in leaves under conditions of water stress. Photosynth Res 34: 449–464

    CAS  Google Scholar 

  • Kobayashi Y and Heber U (1995) Coupling ratios H+/e=3 versus H+/e=2 in chloroplasts and quantum requirements of net oxygen exchange during the reduction of nitrite, ferricyanide and methylviologen. Plant Cell Physiol 36: 1613–1620

    CAS  Google Scholar 

  • Kofer W, Koop HU, Wanner G and Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J, and K of the plastid NAD(P) H-plastoquinone-oxidoreductase in tobacco by polyethelene glycol-mediated plastome transformation. Mol Gen Genet 258: 166–173

    PubMed  CAS  Google Scholar 

  • Kubicki A, Funk E, Westhoff P and Steinmuller K (1996) Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorgum bicolor indicates that the complex I-homologous NAD(P) H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199: 276–281

    CAS  Google Scholar 

  • Lajkó F, Kadioglu A, Borbély G and Garab G (1997) Competition between the photosynthetic and the (chloro) respiratory electron transport chains in cyanobacteria, green algae and higher plants. Effect of heat stress. Photosynthetica 33: 217–226

    Google Scholar 

  • Leegood RC, Crowther D, Walker DA and Hind G (1981) Photosynthetic electron transport in the bundle sheath of maize. FEBS Lett 126: 89–92

    CAS  Google Scholar 

  • Malkin S, Charland Mand Leblanc RM(1992) A photoacoustic study of water in ltrated leaves. Photosynth Res 33: 37–50

    Google Scholar 

  • Mano J, Miyake C, Schreiber U and Asada K (1995) Photoactivation of the electron flow from NADPH to plastoquinone in spinach chloroplasts. Plant Cell Physiol 36: 1589–1598

    CAS  Google Scholar 

  • Marco E, Ohad N, Schwarz R, Lieman-Hurwitz J, Gabay C and Kaplan A (1993) High CO2 concentration alleviates the block in photosynthetic electron transport in an ndhB-inactivated mutant of Synechococcus sp. PCC 7942. Plant Physiol 101: 1047–1053

    PubMed  CAS  Google Scholar 

  • Matsuo M, Endo T and Asada K (1998) Properties of respiratory NAD(P) H dehydrogenase isolated from the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 39: 263–267

    PubMed  CAS  Google Scholar 

  • Matthijs HCP, Coughlan SJ and Hind G (1986) Removal of ferredoxin-NADP + oxidoreductase from thylakoid membranes, rebinding to depleted membranes, and identi cation of the binding site. J Biol Chem 261: 12154–12158

    PubMed  CAS  Google Scholar 

  • Matthijs HCP, Jeanjean R, Yeremenko N, Huisman J, Joset F and Hellingwerf KJ (2002) Hypothesis: versatile function of ferredoxin-NADP + reductase in cyanobacteria provides regulation for transient Photosystem I-driven cyclic electron flow. Funct Plant Biol 29: 201–210

    CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U and Asada K (1992) Donation of electrons from cytosolic components to the intersystem chain in the cyanobacterium Synechococcus sp. 7002 as determined by the reduction of P700 +. Plant Cell Physiol 33: 1099–1105

    CAS  Google Scholar 

  • Mi, H, Endo T and Schreiber U, Ogawa T and Asada K (1994) NAD(P)H dehydrogenase-dependent cyclic electron flow around Photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant Cell Physiol 35: 163–173

    CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U and Asada K (1995) Thylakoid membrane-bound, NADPH-speci c pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 36: 661–668

    CAS  Google Scholar 

  • Mi H, Deng Y, Tanaka Y, Hibino T and Takabe T (2001) Photo-induction of an NADPH dehydrogenase which functions as a mediator of electron transport to the intersystem chain in the cyanobacterium Synechocystis PCC6803. Photosynth Res 70: 167–173

    PubMed  CAS  Google Scholar 

  • Miller AG, Espie GS and Canvin DT (1990) Physiological aspects of CO2 and HCO3-transport by cyanobacteria: a review. Can J Bot 68: 1291–1302

    CAS  Google Scholar 

  • Mills JD, Crowther D, Slovacek RE, Hind G and McCarty RE (1979) Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of Photosystem II by reduced nicotinamide adenine nucleotide phosphate in dark. Biochim Biophys Acta 547: 127–138

    PubMed  CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59: 137–139

    PubMed  CAS  Google Scholar 

  • Miyake C, Schreiber U and Asada K (1995) Ferredoxin-dependent and antimycin A-sensitive reduction of cytochrome b-559 by far-red light in maize thylakoids; participation of a menadiol-reducible cytochrome b-559 in cyclic electron flow. Plant Cell Physiol 36: 743–748

    CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Masao Tasaka and Shikanai T (2002) PGR5 is involved in cyclic electron flow around Photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361–371

    PubMed  CAS  Google Scholar 

  • Ohayama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z Aota SI, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete analysis of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Google Scholar 

  • Ohkawa H, Sonoda M, Hagino N, Shibata M, Pakrasi HP and Ogawa T (2002) Functionally distinct NAD(P) H dehydrogenases and theis membrane localization in Synechocystis sp. PCC6803. Funct Plant Biol 29: 195–200

    CAS  Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proc Natl Acad Sci USA 88: 4275–4279

    PubMed  CAS  Google Scholar 

  • Ott T, Clarke J, Birks K and Johnson G (1999) Regulation of the photosynthetic electron transport chain. Planta 209: 250–258

    PubMed  CAS  Google Scholar 

  • Peltier G and Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53: 523–550

    PubMed  CAS  Google Scholar 

  • Peltier G, Ravenel J and Verméglio A (1987) Inhibition of a respiratory activity by short saturating. ashes in Chlamydomonas: evidence for a chlororespiration. Biochim Biophys Acta 893: 83–90

    CAS  Google Scholar 

  • Price GD, Maeda S, Omata T and Badger MR (2002) Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Funct Plant Biol 29: 131–149

    CAS  Google Scholar 

  • Quiles MJ and Cuello J (1998) Association of ferredoxinNADP oxidoreductase with the chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves. Plant Physiol 117: 235–244

    Google Scholar 

  • Quiles MJ, Albacete ME, Sabater B and Cuello J (1996) Isolation and partial characterization of the NADH dehydrogenase complex from barley chloroplast thylakoids. Plant Cell Physiol 37: 1134–1142

    Google Scholar 

  • Quiles MJ, Garci A and Cuello J (2000) Separation by bluenative PAGE and identi cation of the whole NAD(P) H dehydrogenase complex from barley thylakoids. Plant Physiol Biochem 38: 225–232

    CAS  Google Scholar 

  • Ravenel J, Peltier G and Havaux M (1994) The cyclic electron pathways around Photosystem I in Chlamydomonas reinhardtii as determined in vivo by photoacoustic measurements of energy storage. Planta 193: 251–259

    CAS  Google Scholar 

  • Rich PR (1988) A critical examination of the supposed variable proton stoichiometry of the chloroplast cytochrome b/f complex. Biochim Biophys Acta 932: 33–42

    CAS  Google Scholar 

  • Sazanov LA, Burrows P and Nixon PJ (1995) Presence of a large protein complex containing the ndh gene product and possessing NADH-specific dehydrogenase activity in thylakoid membranes of higher plant chloroplasts. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol 2, pp 705–708. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sazanov LA, Burrows PA and Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429: 115–118

    PubMed  CAS  Google Scholar 

  • Scheller HV (1996) In vitro cyclic electron transport in barley thylakoids follows two independent pathways. Plant Physiol 110: 187–194

    PubMed  CAS  Google Scholar 

  • Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox proteins? Trens Biochem Sci 15: 458–462

    Google Scholar 

  • Schreiber U and Vidaver W (1974) Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus. Biochim Biophys Acta 368: 97–112

    PubMed  CAS  Google Scholar 

  • Seidel-Guyenot W, Schwabe C and Büchel C (1996) Kinetic and functional characterization of a membrane-bound NAD(P) H dehydrogenase located in the chloroplasts of Pleurochloris meiringensis (Xanthophyceae). Photosynth Res 49: 183–193

    CAS  Google Scholar 

  • Shibata M, Okhawa H, Katoh H, Shimoyama M and Ogawa T (2002) Two CO2 uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC6803. Funct Plant Biol 29: 123–129

    CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K and Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around Photosystem I. Proc Natl Acad Sci USA 95: 9705–9709

    PubMed  CAS  Google Scholar 

  • Shikanai T, Munekage Y and Kimura K (2002) Regulation of proton-to-electron stoichiometry in photosynthetic electron transport: physiological function in photoprotection. J Plant Res 115: 3–10

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torozawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiawa F, Kata A, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Svensson P, Andreasson E and Albertsson P-Å(1991) Heterogeneity among Photosystem I. Biochim Biophys Acta 1060: 45–50

    CAS  Google Scholar 

  • Tagawa K and Arnon DI (1962) Ferredoxins as electron carriers in photosynthesis and in biological production and consumption of hydrogen gas. Nature 195: 537–543

    PubMed  CAS  Google Scholar 

  • Tagawa K, Tsujimto HY and Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49: 567–572

    PubMed  CAS  Google Scholar 

  • Takabayashi A, Endo T, Shikanai T and Sato F (2002) Post-illumination reduction of the plastoquinone pool in chloroplast transformants in which chloroplastic NAD(P) H dehydrogenase was inactivated. Biosci Biotechnol Biochem 66: 2107–2111

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Katada S, Ishikawa, Ogawa I and Takabe T (1997) Electron flow from NAD(P) H dehydrogenase to Photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 38: 1311–1318

    CAS  Google Scholar 

  • Teicher HB and Scheller HV (1998) The NAD(P) H dehydrogenase in barley thylakoids is photoactivable and uses NADPH as well as NADH. Plant Physiol 117: 525–532

    CAS  Google Scholar 

  • Thomas DJ, Thomas J, Youderin PA and Herbert S (2001) Photoinhibition and light-induced cyclic electron transport in ndhB and psaE mutants of Synechocystis sp. PCC6803. Plant Cell Physiol 42: 803–812

    PubMed  CAS  Google Scholar 

  • Van Thor JJ, Jeanjean R, Havaux M, Sjollema KA, Joset F, Hellingwerf KJ and Matthijs NCP (2000) Salt shock-induc-ible Photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin: NADP(+) reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim Biophys Acta 1457: 129–144

    PubMed  CAS  Google Scholar 

  • Vera A, Thomás R, Martín M and Sabater B (1990) Apparent expression of small single-copy cpDNA region in senescent chloroplasts. Plant Sci 72: 63–67

    CAS  Google Scholar 

  • Weis E (1981) Reversible heat inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151: 33–39

    CAS  Google Scholar 

  • Wollenberger L, Weibull C and Albertsson P-Å (1995) Further characterization of the chloroplast grana margins: the non-detergent preparation of granal Photosystem I cannot reduce ferredoxin in the absence of NADP + reduction. Biochim Biophys Acta 1230: 10–22

    Google Scholar 

  • Wu J, Neimanis S and Heber U (1991) Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot Acta 104: 283–291

    CAS  Google Scholar 

  • Wu DY, Wright DA, Wetzel C, Voytas DF and Rodermel S (1999) The immutans veriegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11: 43–55

    PubMed  CAS  Google Scholar 

  • Yamane Y, Shikanai T, Kashino Y, Koike H and Satoh K (2000) Reduction of QA in the dark: another cause of fluorescence F0 increase by high temperature in higher plants. Photosynth Res 63: 23–34

    PubMed  CAS  Google Scholar 

  • Yamashita T and Butler WL (1968) Inhibition of chloroplasts by UV-irradiation and heat-treatment. Plant Physiol 43: 2037–2040

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Zhao J, Mühlenhoff U, Bryant DA and Golbeck JH (1993) PsaE is required for in vivo cyclic electron flow around Photosystem I in the cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol 103: 171–180

    PubMed  CAS  Google Scholar 

  • Zhang H Whitelegge JP and Cramer WA (2001) Ferredoxin: NADP + reductase is a subunit of the chloroplast cytochrome b 6/fcomplex. J Biol Chem 276: 38159–38165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhov, N., Carpentier, R. Alternative Photosystem I-Driven Electron Transport Routes: Mechanisms and Functions. Photosynthesis Research 82, 17–33 (2004). https://doi.org/10.1023/B:PRES.0000040442.59311.72

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000040442.59311.72

Navigation