Skip to main content
Log in

Estimation of Soil Textural Features from Soil Electrical Conductivity Recorded Using the EM38

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Soil maps identifying spatial distributions of soil textural features are needed to implement precision agriculture in practice. This study examined the use of soil electrical conductivity recalculated to a soil temperature of 25 °C (EC25) to generate a soil textural map. The examinations were conducted at 16 soil monitoring sites distributed throughout the State of Brandenburg (Germany) which has 1.35 Mha farmland. Descriptions of 413 soil profiles already existed for these sites. They were the basis for calculating the textural features of weighted clay content, weighted silt content and soil textural class type. The soil electrical conductivity was measured using the EM38 instrument at the same locations and under defined measuring conditions. If gleysols were excluded, the coefficient of determination for the regression function between weighted clay content and EC25 was 0.55. A factor score comprising weighted clay and silt contents showed a closer connection with the EC25 (R 2 = 0.67). This means that the weighted silt content also influenced soil electrical conductivity. EC25-values between 0 and 10 mS/m could be allocated to sand or loamy sand profiles, EC25-values between 10 and 20 mS/m to sand or loamy sand over loam profiles, and EC25-values between 20 and 30 mS/m to sandy loam or loam profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boden, AG 1994. Bodenkundliche Kartieranleitung (soil survey instruction), edited by Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der Bundesrepublik Deutschland, Hannover (E. Schweizerbart'sche Verlagsbuchhandlung, Johannesstraße 3 A, 70176 Stuttgart, Germany).

  • Dalgaard, M., Have, H. and Nehmdahl, H. 2001. Soil clay mapping by measurement of electromagnetic conductivity. In: Proceedings of Third Europeanficonference on Precision Agriculture, edited by G. Grenier and S. Blackmore, (agro Montpellier, France), pp. 367–372.

    Google Scholar 

  • Domsch, H., Lück, E. and Eisenreich, M. 1999. Determination of the electrical soilficonductivity with the Geonics EM38 for the identification of the soil types distribution. In: Tagung Landtechnik 1999 (Conference Agricultural Engineering) VDI-Bericht 1503), edited by VDI/MEG (VDI-Verl. Düsseldorf, Germany), pp. 181–186.

    Google Scholar 

  • Domsch, H. and Kuhn, R. 1999. Use of the global positioning system to determine field loading by transport vehicles. In: Proceedings of the International Workshop Agricultural Transport, edited by G. Weise (Justus-Liebig Universität Giessen, Germany), pp. 39–49.

    Google Scholar 

  • Durlesser, H. 1999. Bestimmung der Variation bodenphysikalischer Parameter in Raum und Zeit mit elektromagnetischen Induktionsverfahren. (Determination of soil physical properties variation in space and time using electromagnetic induction methods) (Shaker Verlag Aachen, Germany (FAM-Bericht; Bd. 53) together Diss. Techn. Univ. München).

    Google Scholar 

  • Geonics Limited, 1999. EM38 —Groundficonductivity meter —Operating manual, Mississauga, Ontario, Canada).

    Google Scholar 

  • Han, S., Hummel, J. W., Goering, C. E. and Cahn, M. D. 1994. Cell size selection for site-specificficrop management. Transaction of the ASAE 37, 19–26

    Google Scholar 

  • James, I. T., Waine, T. W., Bradley, R. I., Godwin, R. J. and Taylor, J.C. 2000. Acomparison between traditional methods and EMI scanning for determining soil textural boundaries. AGENG 2000, Paper 00-PA-014, Warwick, UK.

  • King, J. A., Dampney, P. M. R., Lark, M., Mayr, T. R. and Bradley, R. I. 2001. Sensing soil spatial variability by electro-magnetic induction (EMI):Its potential in Precision Farming. In: Proceedings of Third Europeanficonference on Precision Agriculture, edited by G. Grenier and S. Blackmore, (agro Montpellier, France), pp. 419–424.

    Google Scholar 

  • Lück, E. and Eisenreich, M. 2001. Electricalficonductivity mapping for precision agriculture. In: Proceedings of Third Europeanficonference on Precision Agriculture, edited by G. Grenier and S. Blackmore, (agro Montpellier, France), pp. 425–429.

    Google Scholar 

  • Lund, E. D., Colin, P. E., Christy, D. and Drummond P. E., 1998. Applying soil electricalficonductivity technology to Precision Agriculture. In: Proceedings of the fourth Internationalficonference on Precision Agriculture, edited by P.C. Robert, R. H. Rust and W. E. Larson, (ASA-CSSA-SSSA, Madison, WI, USA), pp. 1089–1100.

    Google Scholar 

  • Lund,E.D.,Christy,C.D.,Drummond,P.E.1999. Practical applications of soil electricalficonductivity mapping. In: Precision Agriculture '99: Proceedings of the 2nd Europeanficonference on Precision Agriculture, edited by J. V. Stafford, (Sheffeld Academic Press, Sheffeld, UK) pp. 771–779.

    Google Scholar 

  • McNeill, J. D. 1980a. Electricalficonductivity of soils and rocks (Geonics Ltd., Mississauga, Ontario, Canada, Technical Note TN-5).

    Google Scholar 

  • McNeill, J. D. 1980b. Electromagnetic terrainficonductivity measurement at low induction numbers. (Geonics Ltd., Mississauga, Ontario,Canada, Technical Note TN-6).

    Google Scholar 

  • Neudecker, E., Schmidhalter, U., Sperl, C. and Selige, T. 2001. Site-specific soil mapping by electromagnetic induction. In: Proceedings of Third Europeanficonference on Precision Agriculture, edited by G. Grenier and S. Blackmore (agro Montpellier, France), pp. 271–276.

    Google Scholar 

  • Schmidhalter, U., Zintel, A. and Neudecker, E. 2001. Calibration of electromagnetic induction measurements to survey the spatial variability of soils. In: Proceedings of Third Europeanficonference on Precision Agriculture, edited by G. Grenier and S. Blackmore (agro Montpellier, France), pp. 479–484.

    Google Scholar 

  • Sheets, K. R. and Hendrickx, J. M. H. 1995. Non-invasive soil waterficontent measurement using electromagnetic induction. Water Resources Research 31, 2401–2409.

    Google Scholar 

  • SPSS 1998. SPSS® Base 8. 0 Applications Guide. SPSS Inc.

  • Sudduth, K. A., Drummond, S. T. and Kitchen, N. R. 2001. Accuracy issues in electromagnetic induction sensing of soil electricalficonductivity for precision agriculture. Computers and Electronics in Agriculture 31, 239–264.

    Google Scholar 

  • Wayne, T. W., Blackmore, B. S. and Godwin, R. J. 2000. Mapping available waterficontent and estimating soil texturalficlass using electro-magnetic induction. AGENG 2000, Paper 00-SW-044, Warwick, UK.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domsch, H., Giebel, A. Estimation of Soil Textural Features from Soil Electrical Conductivity Recorded Using the EM38. Precision Agriculture 5, 389–409 (2004). https://doi.org/10.1023/B:PRAG.0000040807.18932.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRAG.0000040807.18932.80

Keywords

Navigation