Skip to main content
Log in

Spider Mite Detection and Canopy Component Mapping in Cotton Using Hyperspectral Imagery and Spectral Mixture Analysis

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Spectral mixture analysis and hyperspectral remote sensing are analytical and hardware tools new to precision agriculture. They can allow detection and identification of various crop stresses and other plant and canopy characteristics through analysis of their spectral signatures. One stressor in cotton, the strawberry spider mite (Tetranychus turkestani U.N.), feeds on plants causing leaf puckering and reddish discoloration in early stages of infestation and leaf drop later. To determine the feasibility of detecting the damage caused by this pest at the field level, AVIRIS imagery was collected from USDA-ARS cotton research fields at Shafter, CA on 4 dates in 1999. Additionally, cotton plants and soil were imaged in situ in 10 nm increments from 450 to 1050 nm with a liquid-crystal tunable-filter camera system. Mite-damaged areas on leaves, healthy leaves, tilled shaded soil, and tilled sunlit soil were chosen as reference endmembers and used in a constrained linear spectral mixture analysis to unmix the AVIRIS data producing fractional abundance maps. The procedure successfully distinguished between adjacent mite-free and mite-infested cotton fields although shading due to sun angle differences between dates was a complicating factor. The resulting healthy plant, soil, mite-damaged, and shade fraction maps showed the distribution and relative abundance of these endmembers in the fields. These hardware and software technologies can identify the location, spatial extent, and severity of crop stresses for use in precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. B., Sabol, D. E., Kapos, V., Filho, R. A., Roberts, D. A., Smith, M. O. and Gillespie, A. R. 1995. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment 52, 137–154.

    Google Scholar 

  • Adams, J. B. and Smith, M. O. 1986. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. Journal Geophysical Research 91, 8098–8112.

    Google Scholar 

  • Adams, J. B., Smith, M. O. and Gillespie, A. R. 1993. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In: Remote Geochemical Analysis: Elemental and Mineralogical Composition, Vol. 7, edited by C. M. Pieters and P. Englert (Cambridge University Press, NY, USA), pp. 145–166.

    Google Scholar 

  • Anonymous 1996. Integrated Pest Management for Cotton in the Western region of the United States, 2nd ed (University of California, Division of Agriculture and Natural Resources), p. 164.

  • Anonymous 2000. ENVI User's Guide (Research Systems, Inc., Boulder, Colorado, USA), p. 930.

  • Bowman, W. D. 1989. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves. Remote Sensing of Environment 30, 249–255.

    Google Scholar 

  • Brown, R. B., Steckler, J.-P. G. A. and Anderson, G. W. 1994. Remote sensing for identification of weeds in no-till corn. Transactions of the ASAE 37, 297–302.

    Google Scholar 

  • Carter, G. A. 1991. Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany 78, 916–924.

    Google Scholar 

  • Carter, G. A. and Knapp, A. K. 2001. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88, 677–684.

    Google Scholar 

  • Curran, P. J., Dungan, J. L. and Gholz, H. L. 1990. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology 7, 33–48.

    Google Scholar 

  • Estep, L. and Davis, B. 2001. Nutrient stress detection in corn using neural networks and AVIRIS hyperspectral imagery. In: Summaries of the 10th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), pp. 119–124.

    Google Scholar 

  • Fitzgerald, G. J., Maas, S. J., and Detar, W. R. 1999a. Early detection of spider mites in cotton using multispectral remote sensing. In: Proceedings of the Beltwide Cotton Conferences, Orlando, FL, 3–7 Jan., edited by P. Dugger and D. A. Richter, (Natl. Cotton Council Am., Memphis, TN), pp. 1022–1024.

    Google Scholar 

  • Fitzgerald, G. J., Maas, S. J., and Detar, W. R. 1999b. Detection of spider mites in cotton using multispectral remote sensing. In: Proceedings of the 17th Biennial Workshop on Color Photography and Videography in Resource Assessment, Reno, NV, 5–7 May, 1999, p. 77–82.

  • Gat, N., Erives, H., Fitzgerald, G. J., Kaffka, S. R. and Maas, S. J. 2000. Estimating sugar beet yield using AVIRIS-derived indices, In Summaries of the 9th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), unpaginated CD.

    Google Scholar 

  • Gat, N., Erives, H., Maas, S. J. and Fitzgerald, G. J. 1999. Application of low altitude AVIRIS imagery of agricultural fields I the San Joaquin Valley, CA to precision farming. In: Summaries of the 8th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), pp. 145–150.

    Google Scholar 

  • Gillespie, A. R., Smith, M. O., Adams, J. B., Willis, S. C., Fischer, A. F. and Sabol, D. E. 1990. Interpretation of residual images: Spectral mixture analysis of AVIRIS images, Owens Valley, California. In: Summaries of the 2nd JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), pp. 243–270.

    Google Scholar 

  • Green, R. O., Pavri, B., Roberts, D. and Ustin, S. 1998. Mapping agricultural crops with AVIRIS spectra in Washington State. In: Summaries of the 7th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), pp. 213–220.

    Google Scholar 

  • Hunt, E. R. and Rock, B. N. 1989. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing of Environment 30, 43–54.

    Google Scholar 

  • Masoni, A., Ercoli, L. and Mariotti, M. 1996. Spectral properties of leaves deficient in iron, sulfur, magnesium, and manganese. Agronomy Journal 88, 937–943.

    Google Scholar 

  • Okin, G. S., Roberts, D. A., Murray, B. and Okin, W. J. 2001. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sensing of Environment 77, 212–225.

    Google Scholar 

  • Palacios-Orueta, A. and Ustin, S. 1996. Multivariate Statistical Classification of Soil Spectra. Remote Sensing of Environment 57, 108–118.

    Google Scholar 

  • Peñuelas, J., Filella, I., Lloret, P., Munoz, F. and Vilajeliu, M. 1995. Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing 16, 2727–2733.

    Google Scholar 

  • Perry, E. M., Gardner, M., Tagestad, J., Roberts, D., Cassady, P., Smith, J. and Nichols, D. 2000. Effects of image resolution and uncertainties on reflectance-derived crop stress indicators. In: Summaries of the 9th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), unpaginated CD.

    Google Scholar 

  • Railyan, V.Ya. and Korobov, R. M. 1993. Red edge structure of canopy reflectance spectra of triticale. Remote Sensing of Environment 46, 173–182.

    Google Scholar 

  • Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G. and Green, R. O. 1998. Mapping Chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment 65, 267–279.

    Google Scholar 

  • Sabol, D. E., Adams, J. B. and Smith, M. O. 1992. Quantitative subpixel spectral detection of targets in multispectral images. Journal of Geophysical Research 97, 2659–2672.

    Google Scholar 

  • Smith, M. O., Ustin, S. L., Adams, J. B. and Gillespie, A. R. 1990. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sensing of Environment 31, 1–26.

    Google Scholar 

  • Summy, K. R., Everitt, J. H., Escobar, D. E., Alaniz, M. A. and Davis, M. R. 1997. Use of airborne digital video imagery to monitor damage caused by two honeydew-excreting insects on cotton. In: Proceedings of the 16th Biennial Workshop on Color Photography and Videography in Resource Assessment, 29 Apr.–1 May, 1997, Weslaco, TX, pp. 238–244.

  • Tian, Q., Tong, Q., Pu, R., Guo, X. and Zhao, C. 2001. Spectroscopic determination of wheat water status using 1650–1850 nm spectral absorption features. International Journal of Remote Sensing 22, 2329–2338.

    Google Scholar 

  • Tompkins, S., Mustard, J. F., Pieters, C. M. and Forsyth, D. W. 1997. Optimization of endmembers for spectral mixture analysis. Remote Sensing of Environment 59, 472–489.

    Google Scholar 

  • Whiting, M. L. and Ustin, S. L. 2001. Correlating AVIRIS imagery to field sampling and spectrometer measurements for inorganic soil carbon. In: Summaries of the 10th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), pp. 455–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, G.J., Maas, S.J. & Detar, W.R. Spider Mite Detection and Canopy Component Mapping in Cotton Using Hyperspectral Imagery and Spectral Mixture Analysis. Precision Agriculture 5, 275–289 (2004). https://doi.org/10.1023/B:PRAG.0000032766.88787.5f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRAG.0000032766.88787.5f

Navigation