Skip to main content
Log in

Making Calcium Phosphate Biomaterials

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Processes are considered for making materials for medical purposes (filling bone cavities). Methods are surveyed for making materials for osteoplastic treatment such as bioactive glasses, glass ceramics, biological or synthetic hydroxyapatite, and composites based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Kanazawa, Inorganic Phosphate Materials [Russian translation], Nauk. Dumka, Kiev (1998).

    Google Scholar 

  2. R. H. Doremus, “Review bioceramics, ” J. Mat. Science, No. 27, 285–297 (1992).

    Google Scholar 

  3. R. Z. LeGeros, J. P. LeGeros, G. Daculsi, and Kijkowska, “Calcium phosphate biomaterials: Preparation, properties, and biodegradation, ” Encyclopaedic Handbook of Biomaterials and Bioengineering, Marcel Dekker Inc., New York (1995), pp. 1429–1463.

    Google Scholar 

  4. V. A. Dubok, “Bioceramics: Yesterday, today, and tomorrow, ” Poroshk. Metall., Nos. 7–8, 69–87 (2000).

    Google Scholar 

  5. A. Ostrovskii, “Osteoplastic materials in modern paraodontology and implantology, ” Novoye v Stomatologii, No. 6, 39–54 (1999).

    Google Scholar 

  6. G. Runge, Osteoporosis [Russian translation], Meditsina, Moscow (1995), pp. 24–33, from Berlin edition (1987).

    Google Scholar 

  7. V. M. Bezrukov and A. S. Grigor'yan, “Hydroxyapatite as a substrate for bone plastics: Theoretical and practical aspects, ” Stomatologiya, 75, No. 5, 7–12 (1996).

    Google Scholar 

  8. E. P. Podrushnyak and L. A. Ivanchenko, “Electron energy states in the structure of bone tissue mineral, ” Probl. Osteologii, 2, No. 4, 26–29 (1999).

    Google Scholar 

  9. Noburu Ikeda, Keiichi Kawanabe, and Takashi Nakamura, “Quantitative comparison of osteoconduction of porous, dense A-W glass-ceramic and hydroxyapatite granules (effects of granule and pore sizes), ” Biomaterials, 20, No. 10, 1087–1095 (1999).

    Google Scholar 

  10. G. Kh. Gruntovskii and S. V. Malyshkina, “Hydroxyapatite ceramics: Features of reactions with bone tissue, ” Tr. Krymskogo Meduniversiteta, 135, 127–128 (1999).

    Google Scholar 

  11. S. V. Malyshkina, N. V. Dedukh, G. Kh. Gruntovskii, et al., “Morphological features of bone tissue reconstruction in the plastic treatment of defects with hydroxyapatite ceramics, ” Ortopediya, Travmatologiya i Protezirovanie, No. 3, 110–114 (1998).

    Google Scholar 

  12. L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, “Bonding mechanism at interface of ceramic prosthetic materials, ” J. Biomed. Mater. Res., 5, 117–141 (1971).

    Google Scholar 

  13. P. D. Sarkisov, N. Yu. Mikhailenko, and V. M. Khavala, “Bioactivity of materials based on glass and sitalls: A survey, ” Steklo i Keramika, Nos. 9–10, 5–10 (1993).

    Google Scholar 

  14. Kim Huun-Min, Miyaji Fumiaki, Kokubo Tadachi, et al., “Bioactivity of Na2O-CaO-SiO2, ” J. Amer. Ceram. Soc., 78, No. 9, 2405–2411 (1995).

    Google Scholar 

  15. K. Carlson, “Glass bioactivity and the relationship to structure, ” Fizika i Khimiya Stekla, 24, No. 3, 405–412 (1998).

    Google Scholar 

  16. Tsuru Kanji, Ohtsuki Chikara, and Osaka Akioshi, "Mechanism of apatite formation on a sodium, ” J. Amer. Ceram. Soc., 82, No. 8, 2155–2160 (1999).

    Google Scholar 

  17. Qiuxia Liu, Qinground Han, and Xiaoming Chen, “Study on combination of R2O-RO-SiO2-P2O5 glass and bio-organism, ” Glass Technol., 42, No. 1, 33–35 (2001).

    Google Scholar 

  18. P. D. Sarkisov, N. Yu. Mikhailenko, E. E. Stroganova, et al., “Structure of bioglasses and their interaction with water and other physiological media, ” Proc. 17th Int. Congr. Glass (Beijing, 1995), Vol. 5 (1995), pp. 222–227.

    Google Scholar 

  19. Hayakawa Satochi, Tsuru Kanji, Iida Hirohisa, et al., “31P MAS-NMR studies of phosphate salts formation on calcium-containing oxide glasses in a simulated body fluid, ” J. Ceram. Soc. Jap., 104, No. 1215, 1000–1003 (1996).

    Google Scholar 

  20. Takadama Hiroaki, Kim Hyun-Min, Kokubo Tadashi, et al., “Mechanism of biomineralisation of apatite on a sodium silicate glass: TEM-EDX study in vitro, ” Chem. Mater., 13, No. 3, 1108–1113 (2001).

    Google Scholar 

  21. J. Perez-Parirnte, F. Balas, and M. Vallet-Regi, “Surface and chemical study of SiO2-P2O5-CaO(MgO) bioactive glasses, ” Chem. Mater., 12, No. 3, 750–755 (2000).

    Google Scholar 

  22. Abe Yoshio, Kawashita Masakazu, Kokubo Tadashi, and Nakamuro Takashi, “Effects of solution on apatite formation on substrate in biomimetic process, ” J. Ceram. Soc. Jap., 109, No. 1266, 106–109 (2001).

    Google Scholar 

  23. M. Gemeinert, R. Müller, F. G. Wihsmann, et al., “Open-pore sintered glass-ceramics as carrier material for biotechnological use, ” 18th Int. Congr. Glass (July 5–10, 1998, San Francisco, Calif.), Westerville, Ohio (1998), p. AB80.

  24. Sh. Yu. Abdullaev, “Glass-crystalline apatite-bearing materials for medical purposes, ” Stomatologiya, 75, No. 5, 57–58 (1996).

    Google Scholar 

  25. K. Suh Chung and K. Kim Ho, Bioceramics Used in Artificial Bone and Artificial Dental Implants and the Process for the Preparation Thereof, Pat. 5634956 USA, Publ. June 3 (1997).

  26. I. A. Stakheev, Z. I. Gorbunova, T. M. Ivantsova, et al., “Replacing bone defects with biositall, ” Ortopediya, Travmatologiya i Protezirovanie, No. 3, 43–46 (1998).

    Google Scholar 

  27. C. Panzera, D. Brodkin, and P. Panzera, Non-Greening Porcelain Compositions, Pat. 6087282 USA, Publ. July 11 (2000).

  28. Nonami Toru and Tsutsumi Sadami, “Making a CaO-MgO-SiO2-TiO2-Ag2O glass for preparing glassceramic dental crowns by pressing, ” J. Ceram. Soc. Jap., 104, No. 1207, 201–207 (1996).

    Google Scholar 

  29. M. Schweiger, M. Frank, V. Rheinberger, et al., Sinterbare Lithiumdisilikat-Glaskeramik, Pat. 19647739 Germany, Publ. March 12 (1998).

  30. W. Holand, M. Frank, H. Drescher, et al., Chemisch Stabile Transluzente Apatite-Glaskeramik, Pat. 19725553 Germany, Publ. December 24 (1997).

  31. Sh. Yu. Abdullaev and M. Kh. Arkhipova, “Using new biologically compatible materials in restoring jaw defects, ” Stomatologiya, No. 3, 37–38 (1999).

    Google Scholar 

  32. G. Libovits, Failure, in 7 Volumes, Volume 7: Failure of Nonmetals and Composite Materials, Part II, Organic Materials [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  33. V. P. Zuev and A. S. Pankratov, “Using hydroxyapatite in the surgical preparation of the oral cavity for prostheses, ” Stomatologiya, No. 1, 71–73 (1996).

    Google Scholar 

  34. G. Carl, S. Habelitz, C. Jana, et al., Apatite-Glaskeramik, Verfahren zu Ihrer Herstellung Sowie Vervendung Derselben, Pat. 19812278 Germany, Publ. September 23 (1999).

  35. M. Laczka, K. Cholewa, and D. Rata, “Bioactive glass-ceramic materials obtained from gel-derived powders, ” 18th Int. Congr. Glass (July 5–10, 1998, San Francisco, Calif.), Westerville, Ohio (1998), p. AB62.

  36. Van Vezer, Phosphorus and Its Compounds [Russian translation], Izd. Inostr. Lit., Moscow (1962).

    Google Scholar 

  37. V. P. Orlovskii, S. G. Kurdyumov, and I. O. Slivka, “Synthesis, properties, and uses of calcium hydroxyapatite, ” Stomatologiya, 75, No. 5, 68–73 (1996).

    Google Scholar 

  38. R. Z. LeGeros and J. P. LeGeros, “Dense hydroxyapatite, ” An Introduction to Bioceramics, L. L. Hench and J. Wilson (eds.), World Scientific, London (1993), pp. 139–180.

    Google Scholar 

  39. J. C. Quintana Diaz, “Clinical experiences with coralline the Cuban in maxillofacial surgery, ” Cuban Rev. Estomatol., No. 34(2), 76–79 (1997).

    Google Scholar 

  40. V. A. Dubok, E. A. Zhurakivsky, L. A. Ivanchenko, et al., “On some crystal structure defects in hydroxyapatite microcrystals, ” Met. Phys. Adv. Tech., 17, 313–322 (1998).

    Google Scholar 

  41. N. M. Longinova, N. A. Kozyrev, and S. V. Lipochkin, “Physicochemical properties of hydroxyapatite made by precipitation, ” Steklo i Keramika, No. 5, 24–25 (2000).

    Google Scholar 

  42. N. M. Longinova, S. V. Lipochkin, N. A. Kozyreva, et al., A Method of Making Single-Phase Hydroxyapatite [in Russian], Pat. 2147290 Russia, Publ. April 10 (2000).

  43. E. G. Belyakova, A Method of Making Fine-Grained High-Purity Hydroxyapatite, Pat. 2149827 Russia, Publ. May 27 (2000).

  44. N. Atsushi, S. Kiyoko, Y. Shunro, et al., “Synthesis of hydroxyapatite by the hydrolysis of α-calcium phosphate, ” J. Ceram. Soc. Jap., 107, No. 1241, 89–91 (1999).

    Google Scholar 

  45. N. Atsushi, S. Kiyoko, Y. Shunro, et al., “Novel synthesis method of hydroxyapatite whiskers by hydrolysis of tricalcium phosphate in mixtures of water and organic solvent, ” J. Amer. Ceram. Soc., 82, No. 8, 2029–2032 (1999).

    Google Scholar 

  46. I. Takeoki and N. Akio, “Effects of pH of the aqueous solutions on the growth of hydroxyapatite whiskers, ” J. Ceram. Soc. Jap., 106, No. 1236, 820–823 (1998).

    Google Scholar 

  47. I. Takeoki and N. Akio, “Effects of buffered solutions on the growth of whisker hydroxyapatite crystals, ” J. Ceram. Soc. Jap., 107, No. 1245, 442–448 (1999).

    Google Scholar 

  48. K. Hiroaki, F. Sachiko, and K. Sridhar, “Microwave-versus conventional-hydrothermal synthesis of hydroxyapatite crystals from gypsum, ” J. Ceram. Soc. Jap., 82, No. 8, 2257–2259 (1999).

    Google Scholar 

  49. F. Sachiko, K. Hiraoki, and K. Sridhar, “Porous hydroxyapatite monoliths from gypsum waste, ” J. Mater. Chem., 8, No. 12, 2802–2806 (1998).

    Google Scholar 

  50. Toyama Takeshi, Oshima Atsuo, and Yasue Tamotsu, “Hydrothermal synthesis of hydroxyapatite whisker from amorphous calcium phosphate and the effect of carboxylic acid, ” J. Ceram. Soc. Jap., 109, No. 1267, 232–237 (2001).

    Google Scholar 

  51. M. Aizawa, T. Hanazawa, K. Itatani, et al., “Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique, ” J. Mater. Sci., 34, No. 12, 2865–2873 (1999).

    Google Scholar 

  52. Aizawa Mamoru, Howell F. Scott, Itatani Kiyoshi, et al., “Fabrication of porous sintering of fibrous hydroxyapatite particles, ” J. Ceram. Soc. Jap., 108, No. 1255, 249–253 (2000).

    Google Scholar 

  53. Nakahira Atsushi, Tamai Masato, Sakamoto Kiyoko, et al., “Sintering and microstructure of porous hydroxyapatite, ” J. Ceram. Soc. Jap., 108, No. 1253, 99–104 (2000).

    Google Scholar 

  54. V. V. Shumkova, V. M. Pogrebenkov, A. V. Karlov, et al., “Hydroxyapatite-wollastonite bioceramics, ” Steklo i Keramika, No. 10, 18–20 (2000).

    Google Scholar 

  55. M. A. Mal'kov, S. V. Lipochkin, Yu. M. Mosin, et al., “Ceramics made from hydroxyapatite for medical purposes, ” Steklo i Keramika, No. 7, 28–29 (1991).

    Google Scholar 

  56. K. de Groot, “Application of porous bioceramics in surgery, ” Mat. Techn., 8, No. 1–2, 12–15 (1993).

    Google Scholar 

  57. K. Draenert, Werkstoff und Verfahren zu Seiner Herstellung, Pat. 4403509 Germany, Publ. August 10 (1995).

  58. Lu Hui, Qu Zhe, and Zhou Yanchuh, “Preparation and mechanical properties of dense polycrystalline hydroxyapatite through freeze-drying, ” J. Mater. Sci. Mater. Med., 9, No. 10, 583–587 (1998).

    Google Scholar 

  59. K. C. B. Yeong, J. Wang, and S. C. Ng, “Fabricating identified hydroxyapatite ceramics from a precipitated precursor, ” Mater. Lett., 38, No. 3, 208–213 (1999).

    Google Scholar 

  60. Eaden Saw, Kenneth H. Sandhage, Patrick K. Gallagher, et al., “The fabrication of near net-shaped hydroxyapatite ceramics by the oxidation of solid metal-bearing precursors, ” Mater. Manuf. Proc., 15, No. 1, 29–45 (2000).

    Google Scholar 

  61. Wojciech L. Suchanek and Masahiro Yoshimura, “Preparation of fibrous, porous hydroxyapatite whiskers, ” J. Amer. Ceram. Soc., 81, No. 3, 765–767 (1998).

    Google Scholar 

  62. Pierre Laurolle, Atsuo Ito, and Tetsuya Tateishi, “Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics, ” J. Amer. Ceram. Soc., 81, No. 6, 1421–1428 (1998).

    Google Scholar 

  63. H. Kazuyuki, H. Toshiyuki, T. Hideaki, et al., “New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method, ” J. Amer. Ceram. Soc., 79, No. 10, 2771–2774 (1996).

    Google Scholar 

  64. V. S. Komlev, S. M. Barinov, V. P. Orlovskii, et al., “Porous ceramic granules made of hydroxyapatite, ” Ogneupory i Tekhnicheskaya Keramika, No. 5, 18–20 (2001).

    Google Scholar 

  65. A. A. Morozova, A. A. Starovoitov, L. E. Shpilevska, and V. E. Morozov, Method of Making Hydroxyapatite, Pat. 3656 Belarus, Publ. December 30 (2000).

  66. M. Bosetti, V. Ottani, D. Korel, et al., “Structural and functional macrophages alterations by ceramics of different composition, ” Biomaterials, 20, No. 4, 363–370 (1999).

    Google Scholar 

  67. F. Zorn, F. Weber, A. Almeida, et al., Method of Making Porous Bone Ceramics Depleted in Calcium Oxide, Application 97108964/14 Russia, Publ. June 20 (1999).

  68. Akazawa Toshiyuki and Kabayashi Masayoshi, “Characterisation of differently prepared apatites by adsorption behavior of albumin, ” J. Ceram. Soc. Jap., 104, No. 1208, 284–290 (1996).

    Google Scholar 

  69. Kanno Tohru, Morogami Yasutaka, Kobayashi Masayoshi, et al., “Difference of carbonate ions incorporated into a cattle bone-originated and a chemically synthesised hydroxyapatites, ” J. Ceram. Soc. Jap., 106, No. 1232, 432–434 (1998).

    Google Scholar 

  70. Wojciech Suchanek, Masatomo Yashima, Masato Kakihana, et al., “Hydroxyapatite-whisker composites without sintering additives: Mechanical properties and microstructures evolution, ” J. Amer. Ceram. Soc., 80, No. 11, 2805–2813 (1997).

    Google Scholar 

  71. V. V. Silva and R. Z. Domingues, “Hydroxyapatite-zirconia composites prepared by precipitation method, ” J. Mater. Sci. Mater. Med., 8, No. 12, 907–910 (1997).

    Google Scholar 

  72. Kong Young-Mn, Kom Sona, Kim Hyoun-Ee, et al., “Reinforcement of hydroxyapatite bioceramic by addition of ZrO2 coated with Al2O3, ” J. Amer. Ceram. Soc., 82, No. 11, 2963–2968 (1999).

    Google Scholar 

  73. Edvard S. Ahn, Nathaniel J. Gleason, Atshushi Nakahira, et al., “Nanostructure processing of hydroxyapatitebased bioceramics, ” Nano Lett., 1, No. 3, 149–153 (2001).

    Google Scholar 

  74. Shen Zhijian, Erik Adolfson, Mats Nygren, et al., “Dense hydroxyapatite-zirconia ceramic composites with high strength for biological application, ” Adv. Mater., 13, No. 3, 214–216 (2001).

    Google Scholar 

  75. Matsuno Takashi, Watanabe Kenichi, Ono Kenji, et al., “Production and characteristics of a compositiongradient multilayer ceramic composed of hydroxyapatite and zirconium dioxide, ” J. Ceram. Soc. Jap., 107, No. 1251, 1105–1110 (1999).

    Google Scholar 

  76. A. Afonso, J. D. Santos, M. Vasconselos, et al., “Granules of osteoapatite and glass-reinforced hydroxyapatite implanted in rabbit tibiae, ” J. Materials Science: Mat. Med., No. 7, 507–510 (1996).

    Google Scholar 

  77. D. C. Tancred, B. A. McCormack, and A. J. Carr, “A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites, ” Biomaterials, 19, No. 19, 1735–1743 (1998).

    Google Scholar 

  78. J. C. Knowles, S. Talal, and J. D. Santos, “Sintering effects in a glass-reinforced hydroxyapatite, ” Biomaterials, 17, No. 14, 1437–1442 (1996).

    Google Scholar 

  79. Maria A. Lopes, Fernando J. Monteiro, and Jose D. Santos, “Glass-reinforced hydroxyapatite composites: Fracture toughness and hardness dependence on microstructural characteristics, ” Biomaterials, 20, No. 21, 2085–2090 (1999).

    Google Scholar 

  80. Huang Chuanyong, Zhang Zhongtai, and Tang Zilong, “Influence of CaO-SiO2-P2O5 based bioglasses on zirconia toughened hydroxyapatite, ” J. Mater. Sci. Lett., 18, No. 22, 1816 (1999).

    Google Scholar 

  81. A. Yu. Malysheva, B. I. Beletskii, and E. B. Vlasova, “Structure and properties of composite materials for medical purposes, ” Steklo i Keramika, No. 2, 28–31 (2001).

    Google Scholar 

  82. A. Yu. Malysheva and B. I. Beletskii, “Regulating the biological compatibility of apatite-bearing implantation materials, ” Neorganicheskie Materialy, 37, No. 2, 233–236 (2001).

    Google Scholar 

  83. E. P. Podrushnyak and L. A. Ivanchenko, A Composite Material and a Method of Making It, Pat. 23250 Ukraine, Publ. July 22 (1997).

  84. L. A. Ivanchenko, T. I. Fal'kovskaya, O. M. Gumenyuk, et al., Some Properties of Biomaterials Containing Hydroxyapatite [in Ukrainian], Kiev (1997), deposited at the Ukrainian Central Scientific Library, Institute for Problems of Materials Science.

  85. E. P. Podrushnyak, L. A. Ivanchenko, T. I. Fal'kovskaya, et al., “New biocomposites based on bone hydroxyapatite and their use in biology and medicine, ” Probl. Osteologii, 1, No. 2–3, 98–100 (1998).

    Google Scholar 

  86. L. A. Ivanchenko, T. I. Falkovska, and N. D. Danilenko, “Structure and properties of a high-porosity glass ceramic containing biological hydroxyapatite, ” J. Powder Met. Ceram., 38, No. 9–10, 448–453 (1999).

    Google Scholar 

  87. L. A. Ivanchenko, V. S. Sulima, and N. D. Pinchuk, “The researches of properties of biomaterials based biological hydroxyapatite in synthetic and natural physiological mediums, ” Nanostructured Materials and Coatings for Biomedical and Sensor Applications, Y. G. Gogotsi and I. V. Uvarova (eds.), Vol. 102, II, Mathematics, Physics, and Chemistry, Kluwer Academic Publ., Dordrecht (2003), pp. 77–82.

    Google Scholar 

  88. N. D. Pinchuk and V. S. Sulima, “Biomaterials for osteoplastics, ” Probl. Osteologii, 3, No. 4, 37–41 (2000).

    Google Scholar 

  89. E. P. Podrushnyak, L. A. Ivanchenko, and A. T. Brusko, “Prospects for using glass ceramics containing biological hydroxyapatite for restoring bone tissue, ” Ortopediya, Travmatologiya i Protezirovanie, No. 2, 129–130 (2000).

    Google Scholar 

  90. E. P. Podrushnyak, L. A. Ivanchenko, A. T. Brusko, and N. D. Pinchuk, “Biocompatibility with bone tissue and osteotropicity of composite materials based on “Osteoapatit” biological hydroxyapatite, ” Probl. Osteologii, 3, No. 4, 89 (2000).

    Google Scholar 

  91. L. A. Ivanchenko, T. I. Falkovskaya, and N. D. Pinchuk, “Preparation and properties of a hydroxyapatite strengthened by a glass phase, ” Poroshk. Metall., Nos. 1–2, 62–68 (2003).

    Google Scholar 

  92. V. S. Sulima, L. A. Ivanchenko, N. D. Pinchuk, et al., “Morphological basis for replacing bone defects by biomaterials based on biological osteoapatite, ” Probl. Osteologii, 4, No. 4, 21–26 (2001).

    Google Scholar 

  93. V. S. Sulima and L. M. Panchenko, “Immunological basis for using material based on biological hydroxyapatite for replacing bone defects, ” Galytskii Likarskii Visnyk, 9, No. 1, 87–89 (2002).

    Google Scholar 

  94. M. Bosetti, V. Ottani, M. Raspani, et al., “Structural and functional macrophages alteration by ceramics of different composition, ” Biomaterials, 20, 363–370 (1999).

    Google Scholar 

  95. L. A. Ivanchenko, N. D. Pinchuk, A. A. Krupa, and T. I. Fal'kovskaya, “Structure and properties of a composite material based on hydroxyapatite, ” Steklo i Keramika, No. 6, 81–84 (2003).

    Google Scholar 

  96. P. Ducheyne and Q. Qiu, “Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function, ” Biomaterials, 20, 2287–2303 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanchenko, L.A., Pinchuk, N.D. Making Calcium Phosphate Biomaterials. Powder Metallurgy and Metal Ceramics 42, 357–371 (2003). https://doi.org/10.1023/B:PMMC.0000004155.75027.cc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PMMC.0000004155.75027.cc

Navigation