Skip to main content
Log in

OsPIPK1, a Rice Phosphatidylinositol Monophosphate Kinase, Regulates Rice Heading by Modifying the Expression of Floral Induction Genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A rice gene, OsPIPK1, encoding a 792-aa putative phosphatidylinositol 4-phosphate 5-kinase (PIPK), was identified and characterized. Comparison between the cDNA and genomic sequences revealed the presence of 10 exons (39–1050 bp) and 9 introns (88–745 bp) in OsPIPK1 gene. The deduced amino acid sequence of OsPIPK1 contains a lipid kinase domain that is highly homologous to those of previously isolated PIPKs, and structural analysis revealed the intriguing presence of multiple MORN motifs at the N-terminus. The MORN motifs have also been detected in PIPKs from Arabidopsis thaliana and Oryza sativa, but not in the well-characterized PIPKs from animal and yeast cells. RT-PCR analysis indicated that OsPIPK1 was expressed almost constitutively in roots, shoots, stems, leaves and flowers, and up-regulated following treatment with plant hormones or application of various stresses. An antisense transgenic strategy was used to suppress the expression of OsPIPK1, and homozygous transgenic plants showed earlier heading (7–14 days earlier) than control plants, suggesting that OsPIPK1 negatively regulates floral initiation. This was further confirmed by morphologic observation showing earlier floral development in antisense plants, as well as leaf emergence measurement indicating delayed leaf development under OsPIPK1 deficiency, a common phenotype observed with earlier flowering. RT-PCR analysis and cDNA chip technology were used to examine transcripts of various genes in the transgenic plants and the results showed altered transcriptions of several flowering-time or -identity related genes, suggesting that OsPIPK1 is involved in rice heading through regulation of floral induction genes, signaling and metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre, J., Lassalles, J.P. and Yong, V.W. 1990. Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343: 567–570.

    Google Scholar 

  • Auger, K.R., Serunian, L.A., Solto., S.P., Libby, P. and Cantley, L.C. 1989. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57: 167–175.

    Google Scholar 

  • Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. Nature 361: 315–325.

    Google Scholar 

  • Blazquez, M., Koornneef, M. and Putterill, J. 2001. Flowering on time: genes that regulate the floral transition. Workshop on the molecular basis of flowering time control. EMBO Rep. 2: 1078–1082.

    Google Scholar 

  • Boronenkov, I.V., Loijens, J.C. and Anderson, R.A. 1998. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Cell Biol. 9: 3547–3560.

    Google Scholar 

  • Bunney, T.D., Watkins, P.A.C., Beven, A.F., Shaw, P.J., Hernandez, L.E., Lomonosso, G.P., Shanks, M., Peart, J. and Dr¢bak, B.K. 2000. Association of phosphatidylinositol 3-kinase with nuclear transcription sites in higher plants. Plant Cell 12: 1679–1688.

    Google Scholar 

  • Cantley, L.C., Auger, K.R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R. and Solto., S. 1991. Oncogenes and signal transduction. Cell 64: 281–302.

    Google Scholar 

  • Chong, L.D., Traynor-Kaplan, A., Bokoch, G.M. and Schwartz, M.A. 1994. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79: 507–513.

    Google Scholar 

  • Colley, W.C., Sung, T.C., Roll, R., Jenco, J., Hammond, S.M., Altshuller, Y., Bar-Sagi, D., Morris, A.J. and Frohman, M.A. 1997. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7: 191–201.

    Google Scholar 

  • Cooke, F.T., Dove, S.K., McEwen, R.K., Painter, G., Holmes, A.B., Hall, M.N., Michell, R.H. and Parker, P.J. 1998. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr. Biol. 8: 1219–1222.

    Google Scholar 

  • De Camilli, P., Emr, S.D., McPherson, P.S. and Novick, P. 1996. Phosphoinositides as regulators in membrane traffic. Science 271: 1533–1539.

    Google Scholar 

  • Deak, M., Casamayor, A., Currie, R.A., Downes, C.P. and Alessi, D.R. 1999. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 451: 220–226.

    Google Scholar 

  • DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D. and Hama, H. 2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126: 759–769.

    Google Scholar 

  • Divecha, N., Banfic, H. and Irvine, R.F. 1993. Inositides and the nucleus and inositides in the nucleus. Cell 74: 405–407.

    Google Scholar 

  • Dr¢bak, B.K., Watkins, P.A.C., Valenta, R., Dove, S.K., Lloyd, C.W. and Staiger, C.J. 1994. Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profiling. Plant J. 6: 389–400.

    Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95: 14863–14868.

    Google Scholar 

  • Elge, S., Brearley, C., Xia, H.J., Kehr, J., Xue, H.W. and Mueller-Roeber, B. 2001. An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: synthesis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. Plant J. 26: 561–571.

    Google Scholar 

  • Ferrandiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725–734.

    Google Scholar 

  • Ford, M.G., Pearse, B.M.F., Higgins, M.K., Vallis, Y., Owen, D.J., Gibson, A., Hopkins, C.R., Evans, P.R. and McMahon, H.T. 2001. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of Clathrin lattices on membranes. Science 291: 1051–1055.

    Google Scholar 

  • Gilroy, S., Read, N.D. and Trewavas, A.J. 1990. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346: 769–771.

    Google Scholar 

  • Gross, S.D. and Anderson, R.A. 1998. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal. 10: 699–711.

    Google Scholar 

  • Hammond, S.M., Jenco, J.M., Nakashima, S., Cadwallader, K., Gu, Q., Cook, S., Nozawa, Y., Prestwich, G.D., Frohman, M.A. and Morris, A.J. 1997. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J. Biol. Chem. 272: 3860–3868.

    Google Scholar 

  • Hartwig, J.H., Bokoch, G.M., Carpenter, C.L., Janmey, P.A., Taylor, L.A., Toker, A. and Stossel, T.P. 1995. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82: 643–653.

    Google Scholar 

  • Hayama, R., Izawa, T. and Shimamoto, K. 2002. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43: 494–504.

    Google Scholar 

  • Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719–722.

    Google Scholar 

  • Hirayama, T., Ohto, C., Mizoguchi, T. and Shinozaki, K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 92: 3903–3907.

    Google Scholar 

  • Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., Frohman, M.A. and Kanaho, Y. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a down-stream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99: 521–532.

    Google Scholar 

  • Itoh, J.I., Hasegawa, A., Kitano, H. and Nagato, Y. 1998. A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell 10: 1511–1521.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Jeon, J.S., Jang, S., Lee, S., Nam, J., Kim, C., Lee, S., Chung, Y., Kim, S., Lee, Y.H., Cho, Y. and An, G. 2000. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12: 871–884.

    Google Scholar 

  • Kojima, S., Monna, L., Fuse, T., Sasaki, T. and Yano, M. 2001. Abstract of Plant and Animal Genome IX (abstract No. P116) p. 90.

  • Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C. and Chua, N.H. 1999. Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145: 317–330.

    Google Scholar 

  • Kunst, L., Klenz, J.E., Martinez-Zapater, J. and Haughn, G.W. 1989. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1: 1195–1208.

    Google Scholar 

  • McEwen, R.K., Dove, S.K., Cooke, F.T., Painter, G.F., Holmes, A.B., Shisheva, A., Ohya, Y., Parker, P.J. and Michell, R.H. 1999. Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. J. Biol. Chem. 274: 33905–33912.

    Google Scholar 

  • Meijer, H.J.G., Divecha, N., van den Ende, H., Musgrave, A. and Munnik, T. 1999. Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3,5-bisphosphate in plant cells. Planta 208: 294–298.

    Google Scholar 

  • Mikami, K., Katagiri, T., Iuchi, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J. 15: 563–568.

    Google Scholar 

  • Mueller-Roeber, B. and Pical, C. 2002. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 130: 22–46.

    Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

    Google Scholar 

  • Pical, C., Westergren, T., Dove, S.K., Larsson, C. and Sommarin, M. 1999. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol. Chem. 274: 38232–38240.

    Google Scholar 

  • Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857.

    Google Scholar 

  • Randazzo, P.A. and Kahn, R.A. 1994. GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids. J. Biol. Chem. 269: 10758–10763.

    Google Scholar 

  • Riechmann, J.L. and Ratcliffe, O.J. 2000. A genomic perspective on plant transcription factors. Curr. Opin. Plant. Biol. 3: 423–434.

    Google Scholar 

  • Samach, A. and Coupland, G. 2000. Time measurement and the control of flowering in plants. Bioessays 22: 38–47.

    Google Scholar 

  • Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Mannual, 3rd edn. Cold Spring Harbor Laboratory Press.

  • Simpson, G.G., Gendall, A.R. and Dean, C. 1999. When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15: 519–550.

    Google Scholar 

  • Souer, E., Houwelingen, A., Kloos, D., Mol, J. and Koes, R. 1996. The No Apical Meristem gene of petuniais required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159–170.

    Google Scholar 

  • Stevenson, J.M., Perera, I.Y., Heilmann, I., Persson, S. and Boss, W.F. 2000. Inositol signalling and plant growth. Trends Plant Sci. 5: 252–258.

    Google Scholar 

  • Takenawa, T. and Itoh, T. 2001. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533: 190–206.

    Google Scholar 

  • Takeshima, H., Komazaki, S., Nishi, M., Iino, M. and Kangawa, K. 2000. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6: 11–22.

    Google Scholar 

  • Toker, A. 1998. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Cell Biol. 10: 254–261.

    Google Scholar 

  • Tolias, K.F., Rameh, L.E., Ishihara, H., Shibasaki, Y., Chen, J., Prestwich, G.D., Cantley, L.C. and Carpenter, C.L. 1998. Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J. Biol. Chem. 273: 18040–18046.

    Google Scholar 

  • Welters, P., Takegawa, K., Emr, S.D. and Chrispeels, M.J. 1994. AtVPS34, a phosphatidylinositol 3-kinase of Arabid-opsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc. Natl Acad. Sci. USA 91: 11398–11402.

    Google Scholar 

  • Westergren, T., Dove, S.T., Sommarin, M. and Pical, C. 2001. AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P2 and PtdIns(3,4)P2 in vitro and is inhibited by phosphorylation. Biochem. J. 359: 583–589.

    Google Scholar 

  • Wurmser, A.E., Gary, J.D. and Emr, S.D. 1999. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane tracking pathways. J. Biol. Chem. 274: 9129–9132.

    Google Scholar 

  • Wymann, M.P. and Pirola, L. 1998. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436: 127–150.

    Google Scholar 

  • Xue, H.W., Hosaka, K., Plesch, G. and Mueller-Roeber, B. 2000. Cloning of Arabidopsis thaliana phosphatidylinositol synthase and functional expression in the yeast pis mutant. Plant Mol. Biol. 42: 757–764.

    Google Scholar 

  • Xue, H.W., Pical, C., Brearley, C., Elge, S. and Mueller-Roeber, B. 1999. A plant 126-kDa phosphatidylinositol 4-kinase with a novel repeat structure. Cloning and functional expression in baculovirus-infected insect cells. J. Biol. Chem. 274: 5738–5745.

    Google Scholar 

  • Yang, W., Burkhart, W., Cavallius, J., Merrick, W.C. and Boss, W.F. 1993. Purification and characterization of a phospha-tidylinositol 4-kinase activator in carrot cells. J. Biol. Chem. 268: 392–398.

    Google Scholar 

  • Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y. and Sasaki, T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473–2484.

    Google Scholar 

  • Yano, M., Kojima, S., Takahashi, Y., Lin, H.X. and Sasaki, T. 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127: 1425–1429.

    Google Scholar 

  • Zhang, X., Loijens, J.C., Boronenkov, I.V., Parker, G.J., Norris, F.A., Chen, J., Thum, O., Prestwich, G.D., Majerus, P.W. and Anderson, R.A. 1997. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 272: 17756–17761.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Xu, SP., Luo, D. et al. OsPIPK1, a Rice Phosphatidylinositol Monophosphate Kinase, Regulates Rice Heading by Modifying the Expression of Floral Induction Genes. Plant Mol Biol 54, 295–310 (2004). https://doi.org/10.1023/B:PLAN.0000028796.14336.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000028796.14336.24

Navigation