Skip to main content
Log in

Transgenic Rice Plants Expressing the Antifungal AFP Protein from Aspergillus Giganteus Show Enhanced Resistance to the Rice Blast Fungus Magnaporthe Grisea

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Aspergillus giganteus antifungal protein (AFP), encoded by the afp gene, has been reported to possess in vitro antifungal activity against various economically important fungal pathogens, including the rice blast fungus Magnaporthe grisea. In this study, transgenic rice (Oryza sativa) constitutively expressing the afp gene was generated by Agrobacterium-mediated transformation. Two different DNA constructs containing either the afp cDNA sequence from Aspergillus or a chemically synthesized codon-optimized afp gene were introduced into rice plants. In both cases, the DNA region encoding the signal sequence from the tobacco AP24 gene was N-terminally fused to the coding sequence of the mature AFP protein. Transgenic rice plants showed stable integration and inheritance of the transgene. No effect on plant morphology was observed in the afp-expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of afp plants on the in vitro growth of M. grisea indicated that the AFP protein produced by the trangenic rice plants was biologically active. Several of the T2 homozygous afp lines were challenged with M. grisea in a detached leaf infection assay. Transformants exhibited resistance to rice blast at various levels. Altogether, the results presented here indicate that AFP can be functionally expressed in rice plants for protection against the rice blast fungus M. grisea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonman, J.M. 1992. Blast. In: R.K. Webster and P.S. Gunnell (Eds.), Compendium of Rice Diseases. APS Press, St Paul, MN, pp. 14–17.

    Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martínez del Pozo, A., Gavilanes, J.G. and Rico, M. 1995. NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34: 3009–3021.

    Google Scholar 

  • Carmona, M.J., Molina, A., Fernández, J.A., López-Fando, J.J. and García-Olmedo, F. 1993. Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 3: 457–462.

    Google Scholar 

  • Cavallarin, L., Andreu, D. and San Segundo, B. 1998. Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant-Microbe Interact. 11: 218–227.

    Google Scholar 

  • Christensen, A.H. and Quail, P.H. 1996. Ubiquitin promoter based vectors for high level expression of selectable and/or screenable marker genes in monocotyledoneus plants. Transgenic Res. 5: 216–218.

    Google Scholar 

  • Christensen, A.H., Scharrock, R.A. and Quail, P.J. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.

    Google Scholar 

  • Datta, S., Muthukrisnan, S. and Datta, S.K. 1999. Expression and function of PR proteins in transgenic plants. In: S.K. Datta and S. Muthudrishan (Eds.), Pathogenesis-Related Proteins in Plants, CRC Press, New York, pp. 261–277.

    Google Scholar 

  • Epple, P., Apel, K. and Bohlmann, H. 1997. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9: 509–520.

    Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Alamillo, J.M. and Rodriguez-Palenzuela, P. 1998. Plant defense peptides. Biopolymers 47: 479–491.

    Google Scholar 

  • Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218.

    Google Scholar 

  • Horn, T. and Urdea, M.S. 1986. A chemical 5′-phosphorylation of oligonucleotides that can be monitored by trityl cation release. Tetrahedron Lett. 27: 4705–4708.

    Google Scholar 

  • Iwai, T., Kaku, H., Honkura, R., Nakamura, S., Ochiai, H., Sasaki, T. and Ohashi, Y. 2002. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol. Plant-Microbe Interact. 15: 515–521.

    Google Scholar 

  • Jach, G., Gornhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J. and Maas, C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–103.

    Google Scholar 

  • Lacadena, J., Martínez del Pozo, A., Barbero, J.L., Mancheño, J.M., Gasset, M., Oñaderra, M., López-Otín, C., Ortega, S., García, J. and Gavilanes, J.G. 1994. Overproduction and purification of biologically active native fungal α-sarcin in Escherichia coli. Gene 142: 147–151.

    Google Scholar 

  • Lacadena, J., Martínez del Pozo, A., Gasset, M., Patiño, B., Campos-Olivas, R., Vázquez, C., Martínez-Ruiz, A., Mancheño, J.M., Oñaderra, M. and Gavilanes, J.G. 1995. Characterization of the antifungal protein secreted by the mold Aspergillus giganteus. Arch. Biochem. Biophys. 324: 237–281.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680–685.

    Google Scholar 

  • Li, Q., Lawrence, C.B., Xing, H.-Y., Babbitt, R.A., Bass, W.T., Maiti, I.B. and Everett, N.P. 2001. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212: 635–639.

    Google Scholar 

  • Logeman, J., Schell, J. and Willmitzer, L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163: 16–20.

    Google Scholar 

  • Lorito, M. and Scala, F. 1999. Microbial genes expressed in transgenic plants to improve disease resistance. J. Plant Path. 81: 73–88.

    Google Scholar 

  • Lorito, M., Harman, G.E., Hayes, C.K., Broadway, R.M., Tronsmo, A., Woo, S.L. and Di Pietro, A. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83: 302–307.

    Google Scholar 

  • Lorito, M., Woo, S.L., García-Fernandez, I., Colucci, G., Harman, G.E., Pintor-Toro, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun, S. and Scala, F. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. USA 95: 7860–7865.

    Google Scholar 

  • Martínez-Ruiz, A., Martínez del Pozo, A., Lacadena, J., Mancheño, J.M., Oñaderra, M. and Gavilanes, J.G. 1997. Characterization of a natural larger form of the antifungal protein (AFP) from Aspergillus giganteus. Biochim. Biophys. Acta 1340: 81–87.

    Google Scholar 

  • Matzke, A.J.M. and Matzke, M.A. 1998. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1: 142–148.

    Google Scholar 

  • Melchers, L.S., Sela-Buurlage, M.B., Vloemans, S.A., Woloshuk, C.P., van Roekel, J.S.C., Pen, J., van den Elzen, P.J.M. and Cornelissen, B.J.C. 1993. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants. Plant Mol. Biol. 21: 583–593.

    Google Scholar 

  • Mitsuhara, I., Matsufuru, H., Ohshima, M., Kaku, H., Nakajima, Y., Murai, N., Natori, S. and Ohashi, Y. 2000. Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol. Plant-Microbe Interact. 13: 860–868.

    Google Scholar 

  • Mourgues, F., Brisset, M.N. and Chevreau, E. 1998. Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotech. 16: 203–210.

    Google Scholar 

  • Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8: 4321–4325.

    Google Scholar 

  • Nakaya, K., Omata, K., Okahashi, I., Nakamura, Y., Kolkenbrock, H. and Ulbrich, N. 1990. Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur. J. Biochem. 193: 31–38.

    Google Scholar 

  • Oldach, K.H., Becher, D. and Lörz, H. 2001. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol. Plant-Microbe Interact. 14: 832–838.

    Google Scholar 

  • Olson, B.H. and Goerner, G.L. 1965. α-Sarcin, a new antitumour agent. Isolation, purification, chemical composition, and identity of a new amino acid. Appl. Microbiol. 13: 314–321.

    Google Scholar 

  • Osusky, M., Zhou, G., Osuska, L., Hancock, R.E., Kay, W.W. and Misra, A. 2000. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotech. 18: 1162–1166.

    Google Scholar 

  • Ou, S.H. 1985. Rice Diseases, 2nd edn. Commonwealth Mycological Institute, Kew, UK.

    Google Scholar 

  • Pons, M.J., Marfà, V., Melé, E. and Messeguer, J. 2000. Regeneration and genetic transformation of Spanish rice cultivars using mature embryos. Euphytica 114: 117–122.

    Google Scholar 

  • Prodromou, Ch. and Pearl, L.H. 1992. Recursive PCR: a novel technique for total gene synthesis. Prot. Engin. 5: 827–829.

    Google Scholar 

  • Rothman, J.E. 1987. Protein sorting by selective retention in the endoplasmic reticulum of the Golgi stack. Cell 50: 521–522.

    Google Scholar 

  • Roumen, E., Levy, M. and Notteghem, J.L. 1997. Characterisation of the European pathogen population of Magnaporthe grisea by DNA fingerprinting and pathotype analysis. Eur. J. Plant Path. 103: 363–371.

    Google Scholar 

  • Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svestasrani, P., Garsmeur, O., Ghesquiere, A. and Notteghem, J.L. 2003. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor. Appl. Genet. 106: 794–803.

    Google Scholar 

  • Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Sharma, A., Sharma, R., Imamura, M., Yamakawa, M. and Machii, H. 2000. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett. 484: 7–11.

    Google Scholar 

  • Somssich, I.E. and Halbrock, K. 1998. Pathogen defence in plants: a paradigm of biological complexity. Trends Plant Sci. 3: 86–90.

    Google Scholar 

  • Terras, F.R.G., Eggermont, K., Kovaleva, V., Raikhel, N.V., Osborn, R.W., Kester, A., Rees, S.B., Torrekens, S., Van Leuven, F., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1995. Small cystein-rich antifungal proteins from radish: their role in host defense. Plant Cell 7: 573–588.

    Google Scholar 

  • Toki, S., Takamatsu, S., Nojiri, C., Ooba, S., Anzai, H., Iwata, M., Christensen, A.H., Quail, P. and Uchimiya, H. 1992. Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol. 100: 1503–1507.

    Google Scholar 

  • Towbin, H., Staerhelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl. Acad. Sci. USA 76: 43350–43354.

    Google Scholar 

  • Vila, L., Lacadena, V., Fontanet, P., Martínez del Pozo, A. and San Segundo, B. 2001. A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol. Plant-Microbe Interact. 14: 1327–1331.

    Google Scholar 

  • Wnendt, S., Ulbrich, N. and Stahl, U. 1994. Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Curr. Genet. 25: 519–523.

    Google Scholar 

  • Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.

    Google Scholar 

  • Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A. and Lamb, C.J. 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnology 12: 807–812.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca San Segundo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coca, M., Bortolotti, C., Rufat, M. et al. Transgenic Rice Plants Expressing the Antifungal AFP Protein from Aspergillus Giganteus Show Enhanced Resistance to the Rice Blast Fungus Magnaporthe Grisea . Plant Mol Biol 54, 245–259 (2004). https://doi.org/10.1023/B:PLAN.0000028791.34706.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000028791.34706.80

Navigation