Skip to main content
Log in

Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Appropriately regulated gene expression requires a suitable promoter. A number of promoters have been isolated and shown to be functional in plants, but only a few of them activate transcription of transgenes at high levels constitutively. We report here the cloning and characterization of a novel, constitutively expressed promoter isolated from Cestrum yellow leaf curling virus (CmYLCV), a double-stranded DNA plant pararetrovirus belonging to the Caulimoviridae family. The CmYLCV promoter is highly active in callus, meristems and vegetative and reproductive tissues in Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon esculentum,Zea mays and Oryza sativa. Furthermore, the level of expression is comparable to, or higher than, that from the CaMV 35S, the `super-promoter' or the maize ubiquitin 1 promoters, three frequently used promoters in agricultural biotechnology. The heritable, strong and constitutive activity in both monocotyledonous and dicotyledonous plants, combined with the extremely narrow CmYLCV host range, makes the CmYLCV promoter an attractive tool for regulating transgene expression in a wide variety of plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Kaff, N.S., Kreike, M.M., Covey, S.N., Pitcher, R., Page, A.M. and Dale, P.J. 2000. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoterregulated transgene. Nature Biotech. 18: 995–999.

    Google Scholar 

  • Benfey, P.N., Ren, L. and Chua, N.H. 1990. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 9: 1685–1696.

    PubMed  Google Scholar 

  • Bevan, M., Barnes, W.M. and Chilton, M.D. 1983. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl. Acids Res. 11: 369–385.

    PubMed  Google Scholar 

  • Chen, G., Rothnie, H.M., He, X., Hohn, T. and Fütterer, J. 1996. Efficient transcription from the rice tungro bacilliform virus promoter requires elements downstream of the transcription start site. J. Virol. 70: 8411–8421.

    PubMed  Google Scholar 

  • Christensen, A.H., Sharrock, R.A. and Quail, P.H. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.

    PubMed  Google Scholar 

  • Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

    PubMed  Google Scholar 

  • Day Dowson, M.S., Ashurst, J.L., Mathias, S.F., Watts, J.W., Wilson, T.M.A. and Dixon, R.A. 1993. Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol. Biol. 23: 97–109.

    PubMed  Google Scholar 

  • de Haan, P., Gielen, J.J.L., Prins, M., Wijkamp, I.G., van Schepen, A.D., van Grinsven, M.Q.J.M. and Goldbach, R. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/technology 10: 1133–1137.

    PubMed  Google Scholar 

  • Fang, R.X., Nagy, F., Sivasubramaniam, S. and Chua, N.H. 1989. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1: 141–150.

    PubMed  Google Scholar 

  • Fillati, J.J., Kiser, J., Rose, R. and Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/technology 5: 726–730.

    Google Scholar 

  • Fütterer, J., Gordon, K., Pfeiffer, P., Sanfaçon, H., Pisan, B., Bonneville, J.M. and Hohn, T. 1989. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader. Virus Genes 3: 45–55.

    PubMed  Google Scholar 

  • Fütterer, J., Gordon, K., Sanfaçon, H., Bonneville, J.M. and Hohn, T. 1990. Positive and negative control of translation by the leader sequence of cauliflower mosaic virus pregenomic 35S RNA. EMBO J. 9: 1697–1707.

    PubMed  Google Scholar 

  • Gardner, R.C., Howarth, A.J., Hahn, P., Brown-Luedi, M., Shepherd, R.J. and Messing, J. 1981. The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus M13mp7 shotgun sequencing. Nucl. Acids Res. 9: 2871–2887.

    PubMed  Google Scholar 

  • Goodall, G.J., Wiebauer, K. and Filipowicz, W. 1990. Analysis of pre-mRNA processing in transfected plant protoplasts. Meth. Enzymol. 181: 148–161.

    PubMed  Google Scholar 

  • He, X., Fuetterer, J. and Hohn, T. 2002. Contribution of downstream promoter elements to transcriptional regulation of the rice tungro bacilliform virus promoter. Nucl. Acids Res.30: 497–506.

    PubMed  Google Scholar 

  • Ingham, D.J., Beer, S., Money, S. and Hansen, G. 2001. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. BioTechniques 31: 132–134, 136–140.

    PubMed  Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Google Scholar 

  • Matzke, M.A. and Matzke, A.J. 1995. Homology-dependent gene silencing in transgenic plants: what does it really tell us? Trends Genet. 11: 1–3.

    PubMed  Google Scholar 

  • Medberry, S.L., Lockhart, B.E. and Olszewski, N.E. 1992. The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4: 185–192.

    PubMed  Google Scholar 

  • Mette, M.F., van der Winden, W.J., Matzke, M.A. and Matzke, A.J. 1999. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18: 241–248.

    PubMed  Google Scholar 

  • Negrotto, D., Jolley, M., Beer, S. and Wenck, A.R. 2000. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19: 798–803.

    Google Scholar 

  • Ni, M., Cui, D., Einstein, J., Narasimhulu, S., Vergara, C. and Gelvin, S. 1995. Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J. 7: 651–676.

    Google Scholar 

  • Pooggin, M.M., Hohn, T. and Fütterer, J. 2000. Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader. J. Biol. Chem. 275: 17288–17296.

    PubMed  Google Scholar 

  • Ragozzino, A. 1974. Una virosi del Cestrum parqui L'Erit (Fam. Solanaceae) in Campania. Ann. Fac. Sci. Agric. Univ. Napoli IV 8: 249.

    Google Scholar 

  • Reed, J., Privalle, L., Powell, M.L., Dawson, J., Dunder, E., Suttie, J., Wenck, A., Launis, A., Kramer, C., Chang, Y.-F., Hansen, G. and Wright, M. 2001. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In vitro Cell. Dev. Biol. Plant 37: 127–132.

    Google Scholar 

  • Roberts, C.S., Rajagopal, S., Smith, L.A., Nguyen, T.A., Yang, W., Nugroho, S., Ravi, K.S., Vijayachandra, K., Harcourt, R.L., Dransfield, L., Desamero, N., Slamet, I., Hajdukiewic, P., Svab, Z., Maliga, P., Mayer, J.E., Keese, P., Kilian, K. and Jefferson, R.A. 2003. A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants by both Agrobacterium and direct DNA uptake methods. WEB-site: www.cambia.org. au/main/r_et_vman.htm

  • Rothnie, H.M., Chapdelaine, Y. and Hohn, T. 1994. Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv. Virus Res. 44: 1–67.

    PubMed  Google Scholar 

  • Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937–946.

    PubMed  Google Scholar 

  • Soppe, W.J., Jasencakova, Z., Houben, A., Kakutani, T., Meister, A., Huang, M.S., Jacobsen, S.E., Schubert, I. and Fransz, P.F. 2002. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21: 6549–6559.

    PubMed  Google Scholar 

  • Stavolone, L., Ragozzino, A. and Hohn, T. 2003. Characterization of cestrum yellow leaf curling virus: a new member of the caulimoviridae family. J. Gen. Virol., in press.

  • Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. 1990. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.

    PubMed  Google Scholar 

  • Verdaguer, B., de Kochko, A., Beachy, R.N. and Fauquet, C. 1996. Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol. Biol. 31: 1129–1139.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Stavolone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavolone, L., Kononova, M., Pauli, S. et al. Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53, 703–713 (2003). https://doi.org/10.1023/B:PLAN.0000019110.95420.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000019110.95420.bb

Navigation