Skip to main content
Log in

Exogenous Hexoses Cause Quantitative Changes of Pigment and Glycerolipid Composition in Filamentous Cyanobacteria

  • Published:
Photosynthetica

Abstract

Cyanobacteria Spirulina platensis and Nostoc linckia were grown in the presence of 5 mM and 50 mM glucose or 5 mM mannose, non-metabolisable glucose analogue that effectively triggers the repression of photosynthesis. Glucose evoked active cyanobacterial growth but chlorophyll (Chl) content decreased to some extent and porphyrins were excreted. The content of monogalactosyldiacylglycerol decreased in glucose-grown cyanobacteria and that of phosphatidylglycerol increased substantially. Mannose inhibited cyanobacteria growth as well as Chl synthesis, however, phosphatidylglycerol contents were higher than in respective control samples. In cyanobacterial cells glucose may not only inhibit photosynthetic processes, but also cause structural transformations of membranes which may be necessary for the activity of respiratory electron transport chain components under heterotrophic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benning, C., Beatty, J.T., Prince, R.C., Somerville, C.R.: The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation.-Proc. nat. Acad. Sci. USA 90: 1561-1565, 1993.

    Google Scholar 

  • Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification.-Can. J. Biochem. Physiol. 37: 911-917, 1959.

    Google Scholar 

  • Bykhovskij, V.Ya., Zaytseva, N.I.: [Microbiological synthesis of tetrapyrrol compounds.]-Itogi Nauki Tehniki, Ser. biol. Khimiya 32: 1-176, 1989. [In Russ.]

    Google Scholar 

  • Christie, W.W.: Lipid Analysis.-Pergamon Press, Oxford 1982.

    Google Scholar 

  • Doyle, M.F., Yu, C.-A.: Preparation and reconstitution of a phospholipid deficient cytochrome b6-f complex from spinach chloroplasts.-Biochem. biophys. Res. Commun. 131: 700-706, 1985.

    Google Scholar 

  • Gavrilenko, V.F., Ladygina, M.E., Khandobina, L.M.: [Grand Training Book on Plant Physiology.]-Vysshaya Shkola, Moskva 1975. [In Russ.]

    Google Scholar 

  • Gounaris, K., Whitford, D., Barber, J.: The effect of thylakoid lipids on an oxygen-evolving Photosystem II preparation.-FEBS Lett. 163: 230-234, 1983.

    Google Scholar 

  • Guler, S., Seeliger, A., Harlel, H., Renger, G., Benning, C.: A null mutant of Synechococcus sp. PCC 7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol.-J. biol. Chem. 271: 7501-7507, 1996.

    Google Scholar 

  • Hagio, M., Gombos, Z., Varkonyi, Z., Masamoto, K., Sato, N., Tsuzuki, M., Wada, H.: Direct evidence for requirement of phosphatidylglycerol in Photosystem II of photosynthesis.-Plant Physiol. 124: 795-804, 2000.

    Google Scholar 

  • Jang, J.-C., Leon, P., Zhou, L., Sheen, J.: Hexokinase as a sugar sensor in higher plants.-Plant Cell 9: 5-19, 1997.

    Google Scholar 

  • Jang, J.-C., Sheen, J.: Sugar sensing in higher plants.-Plant Cell 6: 1665-1679, 1994.

    Google Scholar 

  • Kruse, O., Schmid, G.H.: The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from Photosystem II-particles of the cyanobacterium Oscillatoria chalybea.-Z. Naturforsch. 50c: 380-390, 1995.

    Google Scholar 

  • Nichols, B.W.: Separation of lipids of photosynthetic tissues: improvement in analysis by thin-layer chromatography.-70: 417-422, 1963.

    Google Scholar 

  • Pego, J.V., Kortstee, A.J., Huijser, C., Smeekens, S.C.M.: Photosynthesis, sugars and the regulation of gene expression.-J. exp. Bot. 51: 407-416, 2000.

    Google Scholar 

  • Peschek, G.A., Schmetterer, G.: Effect of lipids of the membrane-bound cytochrome oxidase on cyanobacteria.-Naturwissenschaften 68: 575, 1981.

    Google Scholar 

  • Pinevich, V.V., Verzilin, N.N., Mikhajlov, A.A.: [Studies of Spirulina platensis, a novel object for high-intensive cultivation.]-Fiziol. Rast. 17: 1037-1046, 1970. [In Russ.]

    Google Scholar 

  • Rodionov, V.S., Kholoptseva, N.P.: [Determination of plant leaf phospholipids using two-dimensional chromatography in the thin layers of silica gel.]-Fiziol. Biokhim. kult. Rast. 6: 201-206, 1974. [In Russ.]

    Google Scholar 

  • Rolland, F., Moore, B., Sheen, J.: Sugar sensing and signaling in plants.-Plant Cell 14: S185-S205, 2002.

    Google Scholar 

  • Sato, N.: Effect of exogenous glucose on the accumulation of monoglucosyl diacylglycerol in the cyanobacterium Synechocystis PCC 6803.-Plant Physiol. Biochem. 32: 121-126, 1994.

    Google Scholar 

  • Sato, N., Murata, N.: Lipid biosynthesis in the blue-green alga, Anabaena variabilis. I. Lipid classes.-Biochim. biophys. Acta 710: 271-278, 1982.

    Google Scholar 

  • Schmetterer, G.: Cyanobacterial respiration.-In: Bryant, D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 409-435. Kluwer Acad. Publ., Dordrecht-Boston-London 1994.

    Google Scholar 

  • Semenenko, V.E.: [Molecular-biological aspects of endogenous regulation of photosynthesis.]-Fiziol. Rast. 25: 903-921, 1978. [In Russ.]

    Google Scholar 

  • Semenenko, V.E., Zvereva, M.G., Kuptsova, E.S., Klimova, L.A., Vladimirova, M.G.: Metabolite regulation of the chloroplast genome expression and the chloroplast-cytoplasm regulatory relationships.-In: Wiessner, W., Robinson, D.G., Starr, R.C. (ed.): Compartments in Algal Cells and Their Interaction. Pp.129-137. Springer Verlag, Berlin-Heidelberg-New York-Tokyo 1984.

    Google Scholar 

  • Smeekens, S.: Sugar-induced signal transduction in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 49-81, 2000.

    Google Scholar 

  • Stadnichuk, I.N., Rakhimberdieva, M.G., Bolychevtseva, Y.V., Yurina, N.P., Karapetyan, N.V., Selyakh, I.O.: Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of copro-porphyrinogen III formation.-Plant Sci. 136: 11-23, 1998.

    Google Scholar 

  • Svennerholm, L.: The quantitative estimation of cerebrosides in nervous tissue.-J. Neurochemistry 1: 42-53, 1956.

    Google Scholar 

  • Troxler, R.F., Bogorad, L.: Studies on the formation of phycocyanin, porphyrins, and a blue phycobilin by wild-type and mutant strains of Cyanidium caldarium.-Plant Physiol. 41: 491-499, 1966.

    Google Scholar 

  • Vinogradova, O.N., Kovalenko, O.V., Wasser, S.P., Nevo, E., Kislova, O.A., Belikova, O.A.: Biodiversity of Cyanophyta in Israel. Preliminary studies at “Evolution Canyon”, Lower Nahal Oren, Mt. Carmel Natural Preserve.-Algologiya 5: 46-59, 1995.

    Google Scholar 

  • Wada, H., Murata, N.: Membrane lipids in cyanobacteria.-In: Siegenthaler, P.-A., Murata, N. (ed.): Lipids in Photosynthesis: Structure, Function and Genetics. Pp. 65-81. Kluwer Acad. Publ., Dordrecht-Boston-London 1998.

    Google Scholar 

  • Yu, B., Xu, C, Benning, C.: Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth.-Proc. nat. Acad. Sci. USA 99: 5732-5737, 2002.

    Google Scholar 

  • Zender, A., Gorham, E.: Factors influencing the growth of Microcystis aeruginosa Kütz. emend. Elenk.-Can. J. Micro-biol. 2: 195-200, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykhaylenko, N., Syvash, O., Tupik, N. et al. Exogenous Hexoses Cause Quantitative Changes of Pigment and Glycerolipid Composition in Filamentous Cyanobacteria. Photosynthetica 42, 105–110 (2004). https://doi.org/10.1023/B:PHOT.0000040577.30424.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHOT.0000040577.30424.d1

Navigation