Skip to main content
Log in

Chlorophyll Fluorescence as a Tool in Cereal Crop Research

  • Published:
Photosynthetica

Abstract

Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in assessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadia, A., Belkhodja, R., Morales, F., Abadia, J.: Effects of salinity on the photosynthetic pigment composition of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. – J. Plant Physiol. 154: 392–400, 1999.

    Google Scholar 

  • Aguilera, C., Stirling, C.M., Long, S.P.: Genotypic variation within Zea mays for susceptibility to and rate of recovery from chill-induced photoinhibition of photosynthesis. – Physiol. Plant. 106: 429–436, 1999.

    Google Scholar 

  • Ali, D.T., Monneveux, P., Acevedo, E., Nachit, M.: Evaluation of proline analysis and chlorophyll fluorescence quenching measurements as drought tolerance indicators in durum wheat (Triticum turgidum L. var. durum). – Euphytica 79: 65–73. 1994.

    Google Scholar 

  • Andréassson, L.E., Vänngård, T.: Electron transport in photosystems I and II. – Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 379–411, 1988.

    Google Scholar 

  • Andrews, J.R., Fryer, M.J., Baker, N.B.: Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence. – J. exp. Bot. 46: 1195–1203, 1995.

    Google Scholar 

  • Aroca, R., Irigoyen, J.J., Sánchez-Díaz, M.: Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity. – Plant Sci. 161: 719–726, 2001.

    Google Scholar 

  • Babani, F., Lichtenthaler, H.K.: Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. – J. Plant Physiol. 148: 555–566, 1996.

    Google Scholar 

  • Baker, N.R., Bradbury, M., Farage, P.K., Ireland, C.R., Long, S.P.: Measurements of quantum yield of carbon assimilation and chlorophyll fluorescence for assessment of photosynthetic performance of crops in the field. – Phil.Trans. roy. Soc. London B 323: 295–308, 1989.

    Google Scholar 

  • Balota, M., Lichtenthaler, H.K.: Red chlorophyll fluorescence as an ecophysiological method to assess the behaviour of wheat genotypes under drought and heat. – Cereal Res. Commun. 27: 179–187, 1999.

    Google Scholar 

  • Belkhodja, R., Morales, F., Abadia, A., Gómez-Aparisi, J., Abadia, J.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). – Plant Physiol. 104: 667–673, 1994.

    Google Scholar 

  • Belkhodja, R., Morales, F., Abadía, A., Medrano, H., Abadía, J.: Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. – Photosynthetica 36: 375–387, 1999.

    Google Scholar 

  • Bertin, P., Bouharmont, J., Kinet, J.M.: Somaclonal variation and improvement of chilling tolerance in rice: Changes in chilling-induced chlorophyll fluorescence. – Crop Sci. 37: 1727–1735, 1997.

    Google Scholar 

  • Bilger, W., Schreiber, U.: Energy-dependent quenching of darklevel chlorophyll fluorescence in intact leaves. – Photosynth. Res. 10: 303–308, 1986.

    Google Scholar 

  • Bishop, D.G.: Chilling sensitivity in higher plants: The role of phosphatidylglycerol. – Plant Cell Environ. 9: 613–616, 1986.

    Google Scholar 

  • Blum, A., Johnson, J.W.: Transfer of water from roots into dry soil and the effect on wheat water relations and growth. – Plant Soil 145: 141–149, 1992.

    Google Scholar 

  • Bolhàr-Nordenkampf, H.R., Öquist, G.O.: Chlorophyll fluorescence as a tool in photosynthesis research. – In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegoood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual. Pp. 193–206. Chapman & Hall, London – Glasgow – New York – Tokyo – Melbourne – Madras 1993.

    Google Scholar 

  • Bradbury, M., Baker, N.R.: Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. – Biochim. biophys. Acta 63: 542–551, 1981.

    Google Scholar 

  • Bradford, K.J., Hsiao, T.C.: Ecophysiological responses to moderate water stress. – In: Encyclopedia of Plant Physiology. Vol. 12B. Pp. 232–253. Springer-Verlag, Berlin 1982.

    Google Scholar 

  • Briantais, J.-M, Vernotte, C., Picaud, M., Krause, G.H.: A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. – Biochim. biophys. Acta 548: 128–138, 1979.

    Google Scholar 

  • Buchanan, B.B., Gruissem, W., Jones, R.L.: Biochemistry and Molecular Biology of Plants. – Amer. Soc. Plant Physiol., Rockville 2000.

    Google Scholar 

  • Bukhov, N.G., Boucher, N., Carpentier, R.: After effect of short-term heat shock on photosynthetic reactions in barley leaves. – Fiziol. Rast. 44: 605–612, 1997.

    Google Scholar 

  • Buschmann, C.: Photochemical and non-photochemical quenching coefficients of the chlorophyll fluorescence: comparison of variation and limits. – Photosynthetica 37: 217–224, 1999.

    Google Scholar 

  • Buschmann, C., Langsdorf, G., Lichtenthaler, H.K.: Imaging of the blue, green and red fluorescence emission of plants: An overview. – Photosynthetica 38: 483–491, 2000.

    Google Scholar 

  • Butler, W.L.: Chlorophyll fluorescence: A probe for electron transfer and energy transfer. – In: Trebst, A., Avron, M. (ed.): Photosynthesis I. Pp. 149–166. Springer-Verlag, Berlin – Heidelberg – New York 1977.

    Google Scholar 

  • Cave, G.: Water and membranes: The interdependence of their physico-chemical properties in the case of phospholipid head groups. – Stud. biophys. 91: 41–46, 1981.

    Google Scholar 

  • Cogdell, R.J.: Photosynthetic reaction centers. – Annu. Rev. Plant Physiol. 34: 21–45, 1983.

    Google Scholar 

  • Corlett, J.E., Jones, H.G., Massacci, A., Masojidek, J.: Water deficit, leaf rolling and susceptibility to photoinhibition in field grown sorghum. – Physiol. Plant. 92: 423–430, 1994.

    Google Scholar 

  • Crafts-Brandner, S.J., Salvucci, M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature. – Proc. nat. Acad. Sci. USA 97: 13430–13435, 2000.

    Google Scholar 

  • Crafts-Brandner, S.J., van den Loo, F.J., Salvucci, M.E.: The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase differ in sensitivity to elevated temperatures. – Plant Physiol. 114: 439–444, 2000.

    Google Scholar 

  • Cramer, G.R., Bowman, D.C.: Kinetics of maize leaf elongation. I. Increased yield threshold limits short term steady state elongation rates after exposure to salinity. – J. exp. Bot. 42: 1417–1426, 1991.

    Google Scholar 

  • Cramer, G.R., Epstein, E., Läuchli, A.: Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. – J. exp. Bot. 39: 1573–1582, 1988.

    Google Scholar 

  • Crowe, J.H., Crowe, L.M., Chapman, D.: Preservation of membranes in anhydrobiotic organisms. Role of trehalose. – Science 223: 701–703, 1984.

    Google Scholar 

  • Daley, P.F.: Chlorophyll fluorescence analysis and imaging in plant stress and disease. – Can. J. Plant Pathol. 17: 167–173, 1995.

    Google Scholar 

  • Dash, S., Mohanty, N.: Evaluation of assays for the analysis of thermo-tolerance and recovery potentials of seedlings of wheat (Triticum aestivum L.) cultivars. – J. Plant Physiol. 158: 1153–1165, 2001.

    Google Scholar 

  • Davies, W.J., Schurr, U., Taylor, G., Zhang, J.: Hormones as chemical signals involved in root to shoot communication of effect of changes in the soil environment. – In: Hoad, G.U., Lenton, J.R., Atkin, R. (ed.): Hormone Action in Plant Development. Pp. 201–206. Butterworth, London 1987.

    Google Scholar 

  • Davies, W.J., Zhang, J.: Root signals and the regulation of growth and development in plants in drying soils. – Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 55–70, 1991.

    Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress. – Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599–626, 1992.

    Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. – J. Plant Physiol. 157: 54–58, 2000.

    Google Scholar 

  • Dory, I., Boddi, B., Kissimon, J., Paldi, E.: Cold stress responses of inbred maize lines with various degrees of cold tolerance. – Acta agron. hung. 39: 309–318, 1990.

    Google Scholar 

  • Earla, H.J., Tollenaarb, M.: Using chlorophyll fluorometry to compare photosynthetic performance of commercial maize (Zea mays L.) hybrids in the field. – Field Crops Res. 61: 201–210, 1999.

    Google Scholar 

  • Eckardt, N.A., Portis, A.R.: Heat denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denatured Rubisco. – Plant Physiol. 113: 243–248, 1997.

    Google Scholar 

  • El-Shintinawy, F.: Photosynthesis in two wheat cultivars differing in salt susceptibility. – Photosynthetica 38: 615–620, 2000.

    Google Scholar 

  • Fedina, I.S., Georgieva, K., Grigorova, I.: Light-dark changes in proline content of barley leaves under salt stress. – Biol. Plant. 45: 59–63, 2002.

    Google Scholar 

  • Feller, U., Crafts-Brandner, S.J., Salvucci, M.E.: Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase mediated activation of Rubisco. – Plant Physiol. 116: 539–546, 1998.

    Google Scholar 

  • Flagella, Z., Campanile, R.G., Ronga, G., Stoppelli, M.C., Pastore, D., De Caro, A., Di Fonzo, N.: The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance. – Plant Sci. 118: 127–133, 1996.

    Google Scholar 

  • Flagella, Z., Pastore, D., Campanile, R.G., Di Fonzo, N.: Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars. – J. agr. Sci. 122: 183–192, 1994.

    Google Scholar 

  • Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). – J. exp. Bot. 50: 1533–1540, 1999.

    Google Scholar 

  • Frensch, J.: Primary responses of root and leaf elongation to water deficits in the atmosphere and soil solution. – J. exp. Bot. 48: 985–999, 1997.

    Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – Biochim. biophys. Acta 990: 87–92, 1989.

    Google Scholar 

  • Glazer, A.N., Melis, A.: Photochemical reaction centers: structure, organization, and function. – Annu. Rev. Plant Physiol. 38: 11–45, 1987.

    Google Scholar 

  • Goedheer, J.C.: Fluorescence in relation to photosynthesis. – Annu. Rev. Plant Physiol. 23: 87–112, 1972.

    Google Scholar 

  • Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence. – Aust. J. Plant Physiol. 22: 131–160, 1995.

    Google Scholar 

  • Greer, D.H., Hardacre, A.K.: Photoinhibition of photosynthesis and its recovery in two maize hybrids varying in low temperature tolerance. – Aust. J. Plant Physiol. 16: 189–198, 1989.

    Google Scholar 

  • Guenther, J.E., Melis, A.: Dynamics of photosystem II heterogeneity in Dunaliella salina (green algae). – Photosynth. Res. 23: 195–203, 1990.

    Google Scholar 

  • Guisse, B., Srivastava, A., Strasser, R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. – Arch. Sci. 48: 147–160, 1995.

    Google Scholar 

  • Guye, M.G., Wilson, J.M.: The effects of chilling and chill-hardening temperatures on stomatal behaviour in a range of chilling-sensitive species and culturivars. – Plant Physiol. Biochem. 25: 717–721, 1987.

    Google Scholar 

  • Haitz, M, Lichtenthaler, H.K: The measurement of Rfd-values as plant vitality indices with the portable field fluorometer and the PAM-fluorometer. – In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 249–254. Kluwer Academic Publishers, Dordrecht – Boston – London 1988.

    Google Scholar 

  • Haldimann, P., Fracheboud, Y., Stamp, P.: Photosynthetic performance and resistance to photoinhibition of Zea mays. leaves grown at sub-optimal temperature. – Plant Cell Environ. 19: 85–92, 1996.

    Google Scholar 

  • Havaux, M., Ernez, M., Lannoye, R.: FrSélection de variétés de blé dur (Triticum durum Desf.) and de blé tendre (Triticum aestivum L.) adaptées à la sécheresse par la mesure de l'extinction de la fluorescence de la chlorophylle in vivo. – Agronomie 8: 193–199, 1988.

    Google Scholar 

  • Herzog, H., Olszewski, A.: A rapid method for measuring freezing resistance in crop plants. – J. Agron. Crop Sci. 181: 71–79, 1998.

    Google Scholar 

  • Hetherington, S.E., Öquist, G.: Monitoring chilling injury: comparison of chlorophyll fluorescence measurements, post-chilling growth and visible symptoms of injury in Zea mays. – Physiol. Plant. 72: 241–247, 1988.

    Google Scholar 

  • Holzwarth, A.R.: Excited-state kinetics in chlorophyll systems and its relationship to the functional organization of the photosystems. – In: Scheer, H. (ed.): Chlorophylls. Pp. 1125–1151. CRC Press, Boca Raton – Ann Arbor – Boston – London 1991.

    Google Scholar 

  • Hong, S.-S., Hong, T., Jiang, H., Xu, D.-Q.: Changes in the non-photochemical quenching of chlorophyll fluorescence during aging of wheat flag leaves. – Photosynthetica 36: 621–625, 1999.

    Google Scholar 

  • Hormann, H., Neubauer, C., Schreiber, U.: On the relationship between chlorophyll fluorescence quenching and the quantum yield of electron transport in isolated thylakoids. – Photosynth. Res. 40: 93–106, 1994.

    Google Scholar 

  • Horton, P., Bowyer, J.: Chlorophyll fluorescence transients. – In: Harwood, J., Bowyer, J.R. (ed.): Methods in Plant Biochemistry. Pp. 259–296. Academic Press, London 1990.

    Google Scholar 

  • Hsiao, T.C.: Plant responses to water stress. – Annu. Rev. Plant Physiol. 24: 519–570, 1973.

    Google Scholar 

  • Hume, D.J., Jackson, A.K.: Pod formation in soybeans at low temperature. – Genetica 31: 1–20, 1981.

    Google Scholar 

  • Ilík, P., Kouril, R., Fiala, J., Nauš, J., Vacha, F.: Spectral characterization of chlorophyll fluorescence in barley leaves during linear heating. Analysis of high-temperature fluorescence rise around 60ºC. – J. Photochem. Photobiol. 59: 103–114, 2000.

    Google Scholar 

  • Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. – Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.

    Google Scholar 

  • Janowiak, F., Adamczyk, J., Krolikowski, Z.: Differentiation of chilling tolerance among Polish maize lines as measured by chlorophyll fluorescence method. – In: Proc. 3rd Int. Congress Ecophysiological Aspects of Plant Responses to Stress Factors. Kraków 2000.

  • Jin, M.-X., Li, D.-Y., Mi, H.: Effects of high temperature on chlorophyll fluorescence induction and the kinetics of far red radiation-induced relaxation of apparent F0 in maize leaves. – Photosynthetica 40: 581–586, 2002.

    Google Scholar 

  • Jiao, D.-M., Li, X., Huang, X.-Q., Chi, W., Kuang, T.-Y., Zhang, Q.-D., Ku, M.S.B.: Characteristics of carbon assimilation and chlorophyll fluorescence in C4 photosynthetic enzymes transgenic rice. – Photosynth. Res. 69: 238, 2001.

    Google Scholar 

  • Jones, C.A.: C4 Grasses and Cereals. – John Wiley & Sons, New York 1985.

    Google Scholar 

  • Joshi, M.K., Mohanty, P.: Probing photosynthetic performance by chlorophyll a fluorescence: Analysis and interpretation of fluorescence parameters. – J. sci. ind. Res. 54: 155–174, 1995.

    Google Scholar 

  • Jovanovic, L., Veljovic, S., Janjic, V.: Water regime and photosynthesis parameters in two maize lines differing in drought susceptibility. – Biol. Vest. 39: 103–108, 1991.

    Google Scholar 

  • Kautsky, H., Appel, W., Amann, H.: Chlorophyllfluoreszenz und Kohlensäureassimilation. – Biochem. Z. 322: 277–292, 1960.

    Google Scholar 

  • Kicheva, M.I., Tsonev, T.D., Popova, L.P.: Stomatal and nonstomatal limitations to photosynthesis in two wheat cultivars subjected to water stress. – Photosynthetica 30: 107–116, 1994.

    Google Scholar 

  • Kima, J.H., Hwanga, H.J., Parka, H.S., Leeb, C.B., Myungc, K.Y., Lee, C.H.: Differences in the rate of dephosphorylation of thylakoid proteins during dark incubation after chilling in the light between two rice (Oryza sativa L.) varieties. – Plant Sci. 128: 159–168, 1997.

    Google Scholar 

  • Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. – Biochim. biophys. Acta 376: 105–115, 1975.

    Google Scholar 

  • Klinkovský, T., Nauš, J.: Sensitivity of the relative Fpl level of chlorophyll fluorescence induction in leaves to the heat stress. – Photosynth. Res. 39: 201–204, 1994.

    Google Scholar 

  • Koscielniak, J., Biesaga-Koscielniak, J.: Effects of exposure to short periods of suboptimal temperature during chill (5C) on gas exchange and chlorophyll fluorescence in maize seedlings (Zea mays L.). – J. Agron. Crop Sci. 183: 231–241, 1999.

    Google Scholar 

  • Kramer, D.M., DiMarco, G., Loreto, F.: Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves. – In: Mathis, P. (ed.): Photosynthesis: From Light to Biosphere. Vol.I. Pp. 147–150. Kluwer Scientific Publishers, Dordrecht – Boston – London 1995.

    Google Scholar 

  • Krause, G.H, Weis, E.: Chlorophyll fluorescence and photosynthesis. The basics. – Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.

    Google Scholar 

  • Krishnaraj, S., Mawson, B.T., Yeung, E.C., Thorpe, T.A.: Utilization of induction and quenching kinetics of chlorophyll a fluorescence for in vivo salinity screening studies in wheat (Triticum aestivum vars. Kharchia-65 and Fielder). – Can. J. Bot. 71: 87–92, 1993.

    Google Scholar 

  • Lafitte, H.R., Edmeades, G.O.: Temperature effects on radiation use and biomass partitioning in diverse maize cultivars. – Field Crops Res. 49: 231–247, 1997.

    Google Scholar 

  • Lazár, D.: Chlorophyll a fluorescence induction. – Biochim. biophys. Acta 1412: 1–28, 1999.

    Google Scholar 

  • Lazár, D., Ilík, P.: High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. – Plant Sci. 124: 159–164, 1997.

    Google Scholar 

  • Leipner, J., Fracheboud, Y., Stamp, P.: Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. – Plant Cell Environ. 20: 366–372, 1997.

    Google Scholar 

  • Leshem, Y.Y.: Plant Membranes. Biophysical Approach to Membrane Structure and Function. – Kluwer Academic Publishers, Dordrecht 1997.

    Google Scholar 

  • Lichtenthaler, H.K.: In vivo chlorophyll fluorescence as a tool for stress detection in plants. – In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 129–142. Kluwer Academic Publishers, Dordrecht – Boston – London 1988.

    Google Scholar 

  • Lichtenthaler, H.K.: Applications of chlorophyll fluorescence in stress physiology and remote sensing. – In: Steven, M.D., Clark, J.A. (ed.): Applications of Remote Sensing in Agriculture. Pp. 287–305. Butterworth Scientific, London 1990.

    Google Scholar 

  • Lichtenthaler, H.K.: The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. – Photosynthetica 27: 45–55, 1992.

    Google Scholar 

  • Lichtenthaler, H.K, Babani, F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. – Plant Physiol. Biochem. 38: 889–895, 2000.

    Google Scholar 

  • Lichtenthaler, H.K., Babani, F., Langesdorf, G., Buschmann, C.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. – Photosynthetica 38: 521–529, 2000.

    Google Scholar 

  • Lichtenthaler, H.K., Burkart, S., Schindler, C., Stober, F.: Changes in photosynthetic pigments and in vivo chlorophyll fluorescence parameters under photoinhibitory growth conditions. – Photosynthetica 27: 343–353, 1992.

    Google Scholar 

  • Lichtenthaler, H., Buschmann, C., Rinderle, U., Schmuck, G.: Application of chlorophyll fluorescence in ecophysiology. – Radiat. environ. Biophys. 25: 297–308, 1986.

    Google Scholar 

  • Lichtenthaler, H.K., Miehé, J.A.: Fluorescence imaging as a diagnostic tool for plant stress. – Trends Plant Sci. 2: 316–320, 1997.

    Google Scholar 

  • Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants. – CRC crit. Rev. anal. Chem. 19: S29-S85, 1988.

    Google Scholar 

  • Lichtenthaler, H.K., Wenzel, O., Buschmann, C., Gitelson, A.: Plant stress detection by reflectance and fluorescence. – Ann. New York Acad. Sci. 851: 271–285, 1998.

    Google Scholar 

  • Lu, C., Zhang, J.: Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. – Aust. J. Plant Physiol. 25: 883–892, 1998.

    Google Scholar 

  • Lu, C., Zhang, J.: Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. – J. exp. Bot. 50: 1199–1206, 1999.

    Google Scholar 

  • Lutts, S., Kinet, J.M., Bouharmont, J.: NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. – Ann. Bot. 78: 389–398, 1996.

    Google Scholar 

  • Masojídek, J., Trivedi, S., Halshaw, L., Alexiou, A., Hall, D.O.: Synergistic effect of drought and light stresses in sorghum and pearl millet. – Plant Physiol. 96: 198–207, 1991.

    Google Scholar 

  • Matoušková, M., Bartošková, H., Nauš, J., Novotný, R.: Reaction of photosynthetic apparatus to dark desiccation sensitively detected by the induction of chlorophyll fluorescence quenching. – J. Plant Physiol. 155: 399–406, 1999.

    Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence: A practical guide. – J. exp. Bot. 345: 659–668, 2002.

    Google Scholar 

  • McKersie, B.D., Leshem, Y.Y.: Stress and Stress Coping in Cultivated Plants. – Kluwer Scientific Publishers, Dordrecht 1994.

    Google Scholar 

  • McWilliam, J.R., Kramer, P.J., Musser, R.L.: Temperature induced water stress in chilling-sensitive plants. – Aust. J. Plant Physiol. 9: 343–352, 1982.

    Google Scholar 

  • Mishra, R.K., Singhal, G.S.: Photosynthetic activity and peroxidation of thylakoid lipids during photoinhibition and high temperature treatment of isolated wheat chloroplasts. – J. Plant Physiol. 141: 286–292, 1993.

    Google Scholar 

  • Moffatt, J.M., Sears, R.G., Cox, T.S., Paulsen, G.M.: Wheat high temperature tolerance during reproductive growth II. Genetic analysis of chlorophyll fluorescence. – Crop Sci. 30: 886–889, 1990.

    Google Scholar 

  • Mohammed, G.H., Binder, W.D., Gillies, S.L.: Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation. – Scand. J. Forest Res. 10: 383–410, 1995.

    Google Scholar 

  • Mohammad, H.T., Sayed, O.H.: Rescheduling maize irrigation for water conservation. I. Chlorophyll fluorescence, cultivar screening, and yield assessment. – Bull. Fac. Sci. (Assiut Univ., Egypt) 31: 35–41, 2002.

    Google Scholar 

  • Mooney, H.A., Winner, W.E., Pell, E.J., Chu, E.: Responses of Plants to Multiple Stress. – Academic Press, London 1991.

    Google Scholar 

  • Murata, N.: Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. – Plant Cell Physiol. 25: 1241–1245, 1983.

    Google Scholar 

  • Nauš, J., Kuropatwa, R., Klinkovský, T., Ilik, P., Lattová, J., Pavlová, Z.: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve. – Biochim. biophys. Acta 1101: 359–362, 1992.

    Google Scholar 

  • Neubauer, C., Schreiber, U.: The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the photosystem II acceptor side. – Z. Naturforsch. 42c: 1246–1254, 1987.

    Google Scholar 

  • Newman, P.M.: Wall extensibility and the growth of salt stressed plants. – In: Jackson, M.B., Black, C.R. (ed.): Interacting Stresses in Plants in Changing Environments. Pp. 603–615. Springer-Verlag, Berlin 1993.

    Google Scholar 

  • Nilsen, E.T., Orcutt, D.M.: The Physiology of Plants Under Stress. Abiotic Factors. – John Wiley & Sons, New York 1999.

    Google Scholar 

  • Nogués, S., Alegre, L., Araus, J., Perez-Aranda, L., Lannoye, R.: Modulated chlorophyll fluorescence and photosynthetic gas exchange as rapid screening methods for drought tolerance in barley genotypes. – Photosynthetica 30: 465–474, 1994.

    Google Scholar 

  • Nyachiro, J.M., Briggs, K.G., Hoddinott, J., Johnson-Flanagan, A.M.: Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. – Cereal Res. Commun. 29: 135–142, 2001.

    Google Scholar 

  • Park, Y.I., Park, M.C., Hong, Y.N.: Correlative changes between photosynthetic activities and chlorophyll fluorescence in wheat chloroplasts exposed to high temperature. – J. Plant Biol. 37: 37–42, 1994.

    Google Scholar 

  • Pasda, G., Diepenbrock, W.: Effects of chilling and genotype on membrane lipids and membrane-dependent characteristics in leaves of maize (Zea mays L.): II. Movements of the plastoquinone-pool measured with the chlorophyll fluorescence technique. – Kuehn Arch. 90: 209–224, 1996.

    Google Scholar 

  • Pastore, D., Flagella, Z., Rascio, A., Cedola, M., Wittmer, G.: Field studies on chlorophyll fluorescence as drought test in Triticum durum Desf. genotypes. – J. Genet. Breed.43: 45–52, 1989.

    Google Scholar 

  • Polyakoff-Mayber, A., Lerner, H.R.: Plants in saline environments. – In: Pessarakli, M. (ed.): Handbook of Plant Stress. Pp. 245–278. Marcell Dekker, New York 1994.

    Google Scholar 

  • Pospíšil, P.: Mechanisms of non-photochemical chlorophyll fluorescence quenching in higher plants. – Photosynthetica 34: 343–355, 1997.

    Google Scholar 

  • Quinn, P.J., Williams, W.P.: Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. – In: Barber, J., Baker, N.R. (ed.): Photosynthetic Mechanisms and the Environment. Pp. 1–47. Elsevier, Amsterdam – New York – Oxford 1985.

    Google Scholar 

  • Rascher, U., Liebig, M., Lüttge, U.: Evaluation of instant lightresponse curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. – Plant Cell Environ. 23: 1397–1405, 2000.

    Google Scholar 

  • Rekika, D., Kara, Y., Souyris, I., Nachit, M., Asbati, A., Monneveux, P.: The tolerance of PSII to high temperatures in durum wheat (T. turgidum conv. durum): Genetic variation and relationship with yield under heat stress. – Cereal Res. Commun. 28: 395–402, 2002.

    Google Scholar 

  • Rinderle, U., Lichtenthaler, H.K.: The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. – In: Lichtenthaler, H.K. (ed): Applications of Chlorophyll Fluorescence. Pp. 189–196. Kluwer Academic Publishers, Dordrecht – Boston – London 1988.

    Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. – Photosynthetica 40: 13–29, 2002.

    Google Scholar 

  • Roháček, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. – Photosynthetica 37: 339–363, 1999.

    Google Scholar 

  • Saccardy, K., Pineau, B., Roche, O., Cornic, G.: Photochemical efficiency of Photosystem II and xanthophyll cycle components in Zea mays leaves exposed to water stress and high light. – Photosynth. Res. 56: 57–66, 1998.

    Google Scholar 

  • Samson, G., Prášil, O., Yaakoubd, B.: Photochemical and thermal phases of chlorophyll a fluorescence. – Photosynthetica 37: 163–182, 1999.

    Google Scholar 

  • Sayed, O.H.: Photosynthetic acclimation to high temperature in wheat. – Acta bot. neerl. 41: 299–304, 1992.

    Google Scholar 

  • Sayed, O.H.: Aridity and plant survival in desert environments. – In: Prakash, I. (ed.): Ecology of Desert Environments. Pp. 87–103. Scientific Publishers, Jodhpur 2001.

    Google Scholar 

  • Sayed, O.H., Earnshaw, M.J., Emes, M.J.: Photosynthetic responses of different varieties of wheat to high temperature. II. Effect of heat stress on photosynthetic electron transport. – J. exp. Bot. 40: 633–638, 1989a.

    Google Scholar 

  • Sayed, O.H., Earnshaw, M.J., Emes, M.J.: Characterization of the heat-induced stimulation of Photosystem-I-mediated electron transport. – Acta bot. neerl. 43: 137–143, 1994.

    Google Scholar 

  • Sayed, O.H., Emes, M.J., Butler, R.D., Earnshaw, M.J.: High temperature induced changes in chloroplast ultrastructure, leaf fluorescence, and photosynthesis in wheat varieties. – Biochem. Soc. Trans. 14: 59, 1986.

    Google Scholar 

  • Sayed, O.H., Emes, M.J., Earnshaw, M.J., Butler, R.D.: Photosynthetic responses of different varieties of wheat to high temperature. I. Effect of growth temperature on development and photosynthetic performance. –J. exp. Bot. 40: 625–631, 1989b.

    Google Scholar 

  • Schapendonk, A.H.C.M., Dolstra, O., Van Kooten, O.: The use of chlorophyll fluorescence as a screening method for cold tolerance in maize. – Photosynth. Res. 20: 235–247, 1989.

    Google Scholar 

  • Schreiber, U.: Chlorophyll fluorescence: New instruments for special applications. – In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Vol. V. Pp. 4253–4258. Kluwer Academic Publishers, Dordrecht – Boston – London 1998.

    Google Scholar 

  • Schreiber, U., Bilger, W.: Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. – Progress Bot. 54: 151–173, 1993.

    Google Scholar 

  • Schreiber, U., Bilger, W.: Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. – In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (ed.): Plant Responses to Stress. Pp. 27–53. Springer-Verlag, Berlin 1998.

    Google Scholar 

  • Schreiber, U., Bilger, W., Hormann, H., Neubauer, C.: Chlorophyll fluorescence as a diagnostic tool: Basics and some aspects of practical relevance. – In: Raghavendra, A.S. (ed.): Photosynthesis. Comprehensive Treatise. Pp. 320–336. Cambridge University Press, Cambridge 2000.

    Google Scholar 

  • Schreiber, U., Neubauer, C.: O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. – Photosynth. Res. 25: 279–293, 1990.

    Google Scholar 

  • Schulze, E.-D.: Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. – Annu. Rev. Plant Physiol. 37: 247–274, 1986.

    Google Scholar 

  • Selmani, A., Wassom, C.E.: Effect of mild drought on chlorophyll fluorescence and morphological traits in young maize seedlings. – Trans. Kansas Acad. Sci. 94: 85–94, 1991.

    Google Scholar 

  • Šesták, Z., Šiffel, P.: Leaf-age related differences in chlorophyll fluorescence. – Photosynthetica 33: 347–369, 1997.

    Google Scholar 

  • Shangguan, Z., Shao, M.G., Dyckmans, J.: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. – J. Plant Physiol. 156: 46–51,2000.

    Google Scholar 

  • Sharma, P.K., Hall, D.O.: Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stresses. – J. Plant Physiol. 140: 661–666, 1992.

    Google Scholar 

  • Sharp, R.E., Davies, W.J.: Regulation of growth and development of plants growing with a restricted supply of water. – In: Hamlyn, G.J., Flowers, T.J., Jones, M.B. (ed.): Plants Under Stress. Pp. 71–93. Cambridge University Press, Cambridge 1989.

    Google Scholar 

  • Shpiler, L., Blum, A.: Heat tolerance for yield and its components in different wheat culrivars. – Euphytica 51: 257–263, 1991.

    Google Scholar 

  • Sicher, R.C., Sundblad, L.-G., Öquist, G.: Effects of low temperature acclimation upon photosynthetic induction in barley primary leaves. – Physiol. Plant. 73: 206–210, 1988.

    Google Scholar 

  • Somersalo, S., Krause, G.H.: Reversible photoinhibition of unhardened and cold acclimated spinach leaves at chilling temperatures. – Planta 180: 181–187, 1990.

    Google Scholar 

  • Stahl, U., Tusov, V.B., Paschenko, V.Z., Voigt, J.: Spectroscopic investigations of fluorescence behaviour, role and function of the long-wavelength pigments of Photosystem I. – Biochim. biophys. Acta 973: 198–200, 1989.

    Google Scholar 

  • Sthapit, B.R., Wilson, J.: Chilling tolerance in February seeded Chaite rices (Oryza sativa L.) of Nepal. – Ann. appl. Biol. 121: 189–197, 1992.

    Google Scholar 

  • Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. – Photochem. Photobiol. 61:32–42, 1995.

    Google Scholar 

  • Stirbet, A., Govindjee, Strasser, B.J., Strasser, R.J.: Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. – J. theor. Biol. 193: 131–151, 1998.

    Google Scholar 

  • Tambussi, E.A., Casadesus, J., Munné-Bosch, S., Araus, J.L.: Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. – Funct. Plant Biol. 29: 35–44, 2002.

    Google Scholar 

  • Teicher, H.B., Møller, B.L., Scheller, H.V.: Photoinhibition of Photosystem I in field-grown barley (Hordeum vulgare L.): Induction, recovery and acclimation. – Photosynth. Res. 64: 53–61, 2000.

    Google Scholar 

  • Teiz, L., Zeiger, E.: Plant Physiology. – Benjamin-Cummings Publishers, New York 1991.

    Google Scholar 

  • Tjus, S.E., Møller, B.L., Scheller, H.V.: Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. – Plant Physiol. 116: 755–764, 1998.

    Google Scholar 

  • Tjus, S.E., Møller, B.L., Scheller, H.V.: Photoinhibition of Photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small Photosystem I polypeptides. – Photosynth. Res. 60: 75–86, 1999.

    Google Scholar 

  • Tomek, P., Lazár, D., Ilík, P., Nauš, J.: On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light. – Aust. J. Plant Physiol. 28: 1151–1160, 2001.

    Google Scholar 

  • van der Veen, R.: Fluorescence and induction phenomena in photosynthesis. – Physiol. Plant. 4: 486–494, 1951.

    Google Scholar 

  • van Kooten, O., Snel, J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. – Photosynth. Res. 25: 147–150, 1990.

    Google Scholar 

  • Verheul, M.J., Van Hassel, P.R., Stamp, P.: Comparison of maize inbred lines differing in low temperature tolerance: Effect of acclimation at suboptimal temperature on chloroplast functioning. – Ann. Bot. 76: 7–14, 1995.

    Google Scholar 

  • Waisel, Y.: Adaptation to salinity. – In: Raghavendra, A.S. (ed.): Physiology of Stress. Pp. 359–383. John Wiely & Sons, New York 1991.

    Google Scholar 

  • Waisel, Y., Eshel, A., Kafkafi, U.: Plant Roots. The Hidden Part. – Marcel Dekker, New York 1991.

    Google Scholar 

  • Walker, D.A.: Measurement of oxygen and chlorophyll fluorescence measurement. – In: Coombs, J., Hall, D.O., Long, S.P., Scurlock, J.M. (ed.): Techniques in Bioproductivity and Photosynthesis. 2nd Ed. Pp. 95–106. Pergamon Press, Oxford – New York – Sydney – Frankfurt 1985.

    Google Scholar 

  • Warrington, I.J., Dunstone, R.I., Green, L.M.: Temperature effects at three developmental stages on the yield of the wheat ear. – Aust. J. agr. Res. 28: 11–27, 1977.

    Google Scholar 

  • Xu, X.L., Wang, Z.M., Zhang, J.P.: Effect of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain-filling stage. – Acta bot. sin. 43: 571–577. 2001.

    Google Scholar 

  • Yang, Q.F., Jiang, H., Xu, D.Q.: Changes in photosynthetic efficiency of flag leaves of wheat during development. – Acta phytophysiol. sin. 25: 408–412, 1999.

    Google Scholar 

  • Yang, J., Sears, R.G., Gill, B.S., Paulsen, G.M.: Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses – Utilization of assimilate sources by wheat under heat stresses. – Euphytica 125: 179–188, 2002.

    Google Scholar 

  • Ying, J., Lee, E.A., Tollenaar, M.: Response of maize leaf photosynthesis to low temperature during the grain-filling period. – Field Crops Res. 68: 87–96, 2002.

    Google Scholar 

  • Yordanov, I., Georgieva, K., Velikova, V., Tsonev, T., Merakchiiska-Nikolova, M., Paunova, S., Stefanov, D.: Response of the photosynthetic apparatus of different wheat genotypes to drought: I. Laboratory experiments under controlled light and temperature conditions. – Dokl. bolg. Akad. Nauk 54: 79–84, 2001.

    Google Scholar 

  • Yucel, M., Burke, J.J., Nguyen, H.T.: Inhibition and recovery of photosystem II following exposure of wheat to heat shock. – Environ. exp. Bot. 32: 125–135, 1992.

    Google Scholar 

  • Zakhidov, E.A., Zakhidova, M.A., Kasymdzhanov, M.A., Kurbanov, S.S., Mirtadzhiev, F.M., Khabibullaev, P.: Chlorophyll fluorescence as a tool for diagnostics of optimal temperatures of photosynthesis in plants. – Dokl. ross. Akad. Nauk 382: 563–566, 2002.

    Google Scholar 

  • Zhu, X.G., Wang, Q., Zhang, Q.D., Lu, C.M., Kuang, T.V.: Effects of photoinhibition and its recovery on photosynthetic functions of winter wheat under salt stress. – Acta bot. sin. 43: 1250–1254, 2001.

    Google Scholar 

  • Zidan, I., Azaizeh, H., Newmann, P.M.: Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? – Plant Physiol. 93: 7–11, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayed, O. Chlorophyll Fluorescence as a Tool in Cereal Crop Research. Photosynthetica 41, 321–330 (2003). https://doi.org/10.1023/B:PHOT.0000015454.36367.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHOT.0000015454.36367.e2

Navigation