Skip to main content
Log in

Polymer-Like C:H Thin Film Coating of Nanopowders in Capacitively Coupled RF Discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Nanopowders of amorphous SiO2, with typical particle sizes of 30–80 nm, were treated under the non-equilibrium plasma conditions, created by a capacitively coupled (CC) RF discharge formed in pure methane or ethane. The plasma gas flow rate varied between 0.02 and 0.06 slpm, with reactor pressures between 1000 and 5000 Pa, and applied RF power inputs between 700 and 1500 W. The plasma properties were monitored through measurements of the rotational temperature, as derived from the C2 5160 Å Swan band and N2 second positive 3577 Å band, and the atomic hydrogen excitation temperature, from the Hβ Hγ and Hδ lines during the powder treatment process. The compositions of the gases that passed through the plasma were analyzed by mass spectrometry. In spite of the evidence for the presence of CnH2n+2 and CnH2n (n=1–3) species and acetylene in the discharge, the homogeneous formation of soot was not observed. At the same time, the introduced nanoparticles were observed to act as centers for the inception and growth of C:H thin coatings in the form of a polymer-like hydrocarbon layers, of thickness between <5 and 30 nm. The results of TEM, IR spectroscopy, thermo-gravimetric and precision calorimetric analysis performed on the treated powders provide evidence to the formation of an amorphous, high density C:H matrix on the particles' surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Fujii, K. Inata, M. Ohtaki, K. Eguchi, and H. Arai, J. Maters. Sci. 36, 527(2001).

    Google Scholar 

  2. M. A. Correa-Duarte, M. Giersig, and L. M. Liz-Marzan, Chem. Phys. Lett. 5, 497(1998).

    Google Scholar 

  3. S. Tomita, M. Hikita, M. Fujii, S. Hayashi, and K. Yamamoto, Chem. Phys. Lett. 316, 361(2000).

    Google Scholar 

  4. M. E. McHenry, S. A. Majetich, J. O. Artman, M. DeGraef, and S. W. Staley, Phys. Rev. B 49, 11358(1994).

    Google Scholar 

  5. D. Shi, S. X. Wang, W. J. van Ooij, L. M. Want et al. Appl. Phys. Lett. 78, 1243(2001).

    Google Scholar 

  6. M. Boulos and E. Pfender, MRS Bull—Mater. Res. Soc. 21, 65(1996).

    Google Scholar 

  7. V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma, Nauka, Moscow, 1984 (in Russian).

    Google Scholar 

  8. S. V. Dresvin, V. D. Rusanov, Low Temperature Plasma, Series: v.6 HF and UHF Plasmotrons, Nauka, Novosibirsk, 1992 (in Russian).

    Google Scholar 

  9. S. Matsuyama, K. Yamaguchi, S. Tanaka, and M. Yamawaki, Fusion Engineering and Design, 39–40, 1 September 1998, 393-399.

    Google Scholar 

  10. S. Wee and S. M. Park, Opt. Commun. 165 (4–6), 199-205 (1999).

    Google Scholar 

  11. Gas Research Institute (GRI) http://www.me.berkeley.edu/gri mech/

  12. K. M. Leung, R. P. Lindstedt, and W. P. Jones, Combust. Flame 87, 289-305 (1991).

    Google Scholar 

  13. Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges, CRC Press, Boca Raton, London, Tokyo, 1995.

    Google Scholar 

  14. Y. P. Raiser, Gas Discharge Physics. Springer, Berlin/New York, 1991.

    Google Scholar 

  15. A. Cornu and R. Massot, Compilation of Mass Spectral Data, 1, 2, Heyden Publishers, London, Philadelphia, Rheine, 1979.

    Google Scholar 

  16. L. Fulcheri and Y. Schwob, Int. J. Hydrogen Energy 20, 197(1995).

    Google Scholar 

  17. K. Bera, B. Farouk, and P. Vitello, J. Phys. D 34, 1479(2001).

    Google Scholar 

  18. J. Appel, H. Bockhorn, and M. Frenklach, Combust. and Flame 121, 122(2000).

    Google Scholar 

  19. T. Schwarz-Selinger, A. von Keudell, and W. Jacob, J. Appl. Phys. 86, 3988(1999).

    Google Scholar 

  20. B. Dishler, A. Bubenzer, and A. Koidl, Solid State Commun. 48, 105(1983).

    Google Scholar 

  21. M. Meier and A. von Keudel, J. Appl. Phys. 90, 3585(2001).

    Google Scholar 

  22. W. Y. Fan, P. F. Knewstubb, M. Kanning, L. Mechold, J. Ropke, and P. B. Davies, J. Phys. Chem. A 103, 4118(1999).

    Google Scholar 

  23. M. H. El-Naas, R. J. Munz, and D. Berk, Canadian J. Chem. Inorg. 71, 866(1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouprine, A., Gitzhofer, F., Boulos, M. et al. Polymer-Like C:H Thin Film Coating of Nanopowders in Capacitively Coupled RF Discharge. Plasma Chemistry and Plasma Processing 24, 189–215 (2004). https://doi.org/10.1023/B:PCPP.0000013198.39742.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PCPP.0000013198.39742.38

Navigation