Skip to main content
Log in

Chemical Vapor Deposition of Silicon Dioxide by Direct-Current Corona Discharges in Dry Air Containing Octamethylcyclotetrasiloxane Vapor: Measurement of the Deposition Rate

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Experiments in a positive-polarity, wire/plate electrode establish the effects of the concentration of octamethylcyclotetrasiloxane (150–1100 ppm) and the operating current (0.5–2.55 μA/cm length of wire) on the rate of deposition of silicon dioxide on the high voltage wire. The wire is 100 μm radius tungsten and the wire-to-plate spacing is 1.5 cm. Analyses of the deposit with X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy show that it is amorphous silicon dioxide. The deposition rate increases linearly with increasing silicone concentration and corona current. For the concentrations of silicone likely to present in indoor air, the gas-phase processes limit the rate of deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. B. Awad and G. S. P. Castle, J. Air Pollut. Control Assoc. 25, 369(1975).

    Google Scholar 

  2. K. Boelter and J. H. Davidson, Aerosol Sci. Technol. 27, 689(1997).

    Google Scholar 

  3. G. S. P. Castle, I. I. Inculet, and K. I. Burgess, IEEE Trans. Ind. Gen. Appl. IGA-5, 489(1969).

    Google Scholar 

  4. B. Held and R. Peyrous, Czech. J. Phys. 49, 301(1999).

    Google Scholar 

  5. K. Nashimoto, J. Imaging Sci. 32, 205(1988).

    Google Scholar 

  6. A. S. Viner, P. A. Lawless, D. S. Ensor, and L. E. Sparks, IEEE Trans. Ind. Appl. 28, 504(1992).

    Google Scholar 

  7. R. J. Allen, R. A. Wadden, and E. D. Ross, Am. Ind. Hyg. Assoc. J. 39, 466(1978).

    Google Scholar 

  8. J. A. Dorsey and J. H. Davidson, IEEE Trans. Ind. Appl. 30, 370(1994).

    Google Scholar 

  9. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 199(2002).

    Google Scholar 

  10. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 23, 83(2003).

    Google Scholar 

  11. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 495(2002).

    Google Scholar 

  12. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 23, 499(2003).

    Google Scholar 

  13. K. Nashimoto, Jpn. J. Appl. Phys. 26, L1138(1987).

    Google Scholar 

  14. K. Nashimoto, Jpn. J. Appl. Phys. 27, 1381(1988).

    Google Scholar 

  15. K. Nashimoto, Jpn. J. Appl. Phys. 27, 892(1988).

    Google Scholar 

  16. K. Nashimoto, J. Electrochem. Soc. 136, 2320(1989).

    Google Scholar 

  17. K. Nashimoto, Jpn. J. Appl. Phys. 27, L1181(1998).

    Google Scholar 

  18. J. H. Davidson and P. J. McKinney, Aerosol Sci. Technol. 29, 102(1998).

    Google Scholar 

  19. M. Ohring, The Materials Science of Thin Films, Academic Press, 1992.

  20. D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, 2000.

    Google Scholar 

  21. E. U. Condon and H. Odishaw, Handbook of Physics, McGraw-Hill, New York, 1967.

    Google Scholar 

  22. B. L. Chin and E. P. Van de Ven, Solid State Technol. 31, 119(1988).

    Google Scholar 

  23. K. Law, J. Wong, C. Leung, J. Olsen, and D. Wang, Solid State Technol. 32, 60(1989).

    Google Scholar 

  24. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, New York, 1996.

    Google Scholar 

  25. L. Zajickova, J. Janca, and V. Perina, Thin Solid Films 338, 49(1999).

    Google Scholar 

  26. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689(1986).

    Google Scholar 

  27. G. Lucovsky and D. V. Tsu, J. Vac. Sci. Technol. A 5, 2231(1987).

    Google Scholar 

  28. G. Lucovsky, P. D. Richard, D. V. Tsu, S. Y. Lin, and R. J. Markunas, J. Vac. Sci Technol. A 4, 681(1986).

    Google Scholar 

  29. D. V. Tsu, G. N. Parsons, G. Lucovsky, and M. W. Watkins, J. Vac. Sci. Technol. A 7, 1115(1989).

    Google Scholar 

  30. M. J. Kushner, J. Appl. Phys. 74, 6538(1993).

    Google Scholar 

  31. S. M. Han and E. S. Aydil, Thin Solid Films 291, 427(1996).

    Google Scholar 

  32. S. M. Han and E. S. Aydil, J. Vac. Sci. Technol. A 14, 2062(1996).

    Google Scholar 

  33. E. Meek, R. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg, and E. S. Aydil, J. Vac. Sci. Technol. A 16, 544(1998).

    Google Scholar 

  34. P. J. Stout and M. J. Kushner, J. Vac. Sci. Technol. A 11, 2562(1993).

    Google Scholar 

  35. S. C. Deshmukh and E. S. Aydil, J. Vac. Sci. Technol. A 13, 2355(1995).

    Google Scholar 

  36. M. R. Alexander, R. D. Short, and F. R. Jones, J. Mater. Sci. 31, 1879(1996).

    Google Scholar 

  37. K. Schmidt-Szalowski, Z. Rzanek-Boroch, J. Sentek, Z. Rymuza, Z. Kusznierewicz, and M. Misiak, Plasmas Polym. 5, 173(2000).

    Google Scholar 

  38. H.-T. Chiu, http://chiuserv.ac.nctu.edu.tw/~htchiu/cvd/home.html, 1998.

  39. Dow Corning Corporation, Information about Volatile Silicone Fluids, Midland, MI, 1993.

  40. Dow Corning Corporation, Dow Corning Materials and their Applications, Midland, MI, 1994.

  41. M. L. Hitchman and K. F. Jensen, Chemical Vapor Deposition: Principles and Applications, Academic Press, San Diego, 1993.

    Google Scholar 

  42. P. H. McMurry, S. Nijhawan, N. Rao, P. Ziemann, D. B. Kittelson, and S. Campbell, J. Vac. Sci. Technol. A 14, 582(1996).

    Google Scholar 

  43. T. Kim, S. M. Suh, S. L. Girshick, M. R. Zachariah, P. H. McMurry, R. M. Rassel, Z. Shen, and S. A. Campbell, J. Vac. Sci. Technol. A 20, 413(2002).

    Google Scholar 

  44. U. R. Kortshagen, U. V. Bhandarkar, M. T. Swihart, and S. L. Girshick, Pure Appl. Chem. 71, 1871(1999).

    Google Scholar 

  45. S. L. Girshick, C. P. Chiu, R. Muno, C. Y. Wu, L. Yang, S. K. Singh, and P. H. McMurry, J. Aerosol Sci. 24, 367(1993).

    Google Scholar 

  46. R. W. Siegel, Mater. Sci. Eng. A 168, 169(1993).

    Google Scholar 

  47. W. Mahoney and R. P. Andres, Mater. Sci. Eng. A 204, 160(1995).

    Google Scholar 

  48. P. Fauchais, A. Vardelle, and A. Denoirjean, Surf. Coatings Technol. 97, 66(1997).

    Google Scholar 

  49. K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969.

    Google Scholar 

  50. T. L. Barr, J. Vac. Sci. Technol. A 9, 1793(1991).

    Google Scholar 

  51. C. E. Morosanu, Thin Films by Chemical Vapor Deposition, Elsevier, Amsterdam, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane H. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Davidson, J.H. Chemical Vapor Deposition of Silicon Dioxide by Direct-Current Corona Discharges in Dry Air Containing Octamethylcyclotetrasiloxane Vapor: Measurement of the Deposition Rate. Plasma Chemistry and Plasma Processing 24, 169–188 (2004). https://doi.org/10.1023/B:PCPP.0000013197.77036.f5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PCPP.0000013197.77036.f5

Navigation