Skip to main content
Log in

Thermodynamic Analysis on Thermoacoustic Self-Excited Oscillation

  • Published:
Open Systems & Information Dynamics

Abstract

Thermodynamic mechanism of thermoacoustic self-excited oscillation is analyzed in this paper. The law of minimizing entropy flow is obtained basing on the fundamentals of finite-time thermodynamics. The results obtained here show that the thermoacoustic self-excited oscillation, which is a non-isentropic oscillation with power output corresponding to a limit cycle in the phase space takes place when hot temperature T h exceeds a threshold value T h *. The effect of nonlinear terms on the system will lead to the second harmonic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. G. W. Swift, Thermoacoustic engines, J. Acoust. Soc. Am. 84, 1145 (1988).

    Google Scholar 

  2. P. H. Ceperley, Gain and efficiency of a traveling wave heat engine, J. Acoust.Soc. Am. 77, 1239 (1982).

    Google Scholar 

  3. S. Backhaus, G. W. Swift, A thermoacoustic stirling heat engine, Nature 399, 335 (1999).

    Google Scholar 

  4. T. Yazaki, A. Iwata, T. Mackawa, and A. Tominaga, Traveling wave thermoacoustic engine in a looped tube, Phys. Rev. Lett. 81, 3128 (1998).

    Google Scholar 

  5. X. Deng, Thermoacoustic essence of regenerator and the designing of thermoacoustic heat engine, Ph. D. Thesis, Huazhong University of Science and Technology, Chinese Wuhan, 1994.

    Google Scholar 

  6. P. S. Spoor and G. W. Swift, Thermoacoustic Separation of a He-Ar Mixture, Phys. Rev. Lett. 85, 1646 (2000).

    Google Scholar 

  7. R. S. Reid and G. W. Swift, Experiments with a flow-through thermoacoustic refrigerator, J. Acoust. Soc. Am. 108, 2835 (2000).

    Google Scholar 

  8. R. A. Hiller and G. W. Swift, Condensation in a Steady-flow thermoacoustic refrigerator, LAUR-99-2692, Los Alamos.

  9. G. W. Swift, Thermoacoustic natural gas liquefier, Proceedings of the DOE Natural Gas Conference, Houston TX, March 1997.

  10. Lord Rayleigh, The theory of sound, Dover, New York, 1945.

    Google Scholar 

  11. N. Rott, Damped and thermally driven acoustic oscillations in wide and narrow tubes, Z. Angew. Math. Phys. 20, 230 (1969).

    Google Scholar 

  12. N. Rott, Thermally driven acoustic oscillations, Part II: Stability limit for helium, Z. Angew. Math. Phys. 24, 54 (1973).

    Google Scholar 

  13. A. Tominaga, Oscillation mode gas in a looped tube with a Branch, Cryogenic Engineering 36, 178 (2001) (in Japanese).

    Google Scholar 

  14. J. C. Wheatley, T. J. Hofler, G. W. Swift, and A. Migliori, Experiments with an intrinsically irreversible acoustic heat engine, Phys. Rev. Lett. 50, 499 (1983).

    Google Scholar 

  15. J. C. Wheatley, T. J. Hofler, G. W. Swift, and A. Migliori, Understanding some simple phenomena in thermoacoustics with application to acoustic heat engines, Am. J. Phys. 53, 147 (1985).

    Google Scholar 

  16. G. W. Swift, Thermoacoustic Engines and Refrigerators, Physics Today, July 1995, pp. 22-28.

  17. T. J. Hofler, Thermoacoustic Refrigerator Design and Performance, Ph. D dissertation, Univ. of California, San Diego, 1986.

    Google Scholar 

  18. G. W. Swift, Analysis and Performance of a Large Thermoacoustic, Engine J. Acoustic Soc. Am. 92, 1551 (1992).

    Google Scholar 

  19. G. W. Swift and W. C. Ward, Simple Harmonic Analysis of Regenerators, J. of Thermophysics and Heat Transfer 10, 652 (1996).

    Google Scholar 

  20. L. I. Rozonoer, A. M. Tsirlin, Optimal control of thermodynamic systems, Automation and Remote Control 1, 2, 3 (1983).

  21. A. Tominaga, Thermodynamic aspects of thermoacoustic theory, Cryogenics 35, 427 (1995).

    Google Scholar 

  22. J. Xiao, Thermocoustic theory for cyclic regenerator, Part I: Fundament, Cryogenics 32, 895 (1992).

    Google Scholar 

  23. A. Tominaga, Thermoacoustic spontaneous oscillation of fluid, xxx 36, 163 (in Japanese).

  24. F. Wu, Study of Finite time thermodynamics on Stirling machine, Ph. D. Thesis, Chinese Naval Academy of Engineering, 1998 (in Chinese).

  25. L. Chen, Finite time thermodynamic analysis of irreversible processes and cycles, Ph. D. Thesis, Chinese Naval Academy of Engineering, 1998 (in Chinese).

  26. K. Dong, The network modeling of thermoacoustic system and its experimental investigation, Ph. D. Thesis, Huazhong University of Science and Technology, Chinese Wuhan, 2000.

    Google Scholar 

  27. F. Wu, P. Deng, X. Deng, Active network modeling for regenerator of regenerative cryocooler, SEE 2000, New York, Wallingford (U.K.), vol. 3, pp. 1217-1224.

  28. Q. Li, W. Zhang, F. Guo, H-matrix description of the performance of regenerator, SEE 2000, New York, Wallingford (U.K.), vol. 3, pp. 1203-1207.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Wu, F., Guo, F. et al. Thermodynamic Analysis on Thermoacoustic Self-Excited Oscillation. Open Systems & Information Dynamics 10, 391–402 (2003). https://doi.org/10.1023/B:OPSY.0000009558.63129.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OPSY.0000009558.63129.24

Keywords

Navigation