Skip to main content

Advertisement

Log in

Principles of thermoacoustic energy harvesting

  • Review
  • Prospective Materials and Structures for Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Thermoacoustics exploit a temperature gradient to produce powerful acoustic pressure waves. The technology has a key role to play in energy harvesting systems. A time-line in the development of thermoacoustics is presented from its earliest recorded example in glass blowing through to the development of the Sondhauss and Rijke tubes to Stirling engines and pulse-tube cryo-cooling. The review sets the current literature in context, identifies key publications and promising areas of research. The fundamental principles of thermoacoustic phenomena are explained; design challenges and factors influencing efficiency are explored. Thermoacoustic processes involve complex multi-physical coupling and transient, highly non-linear relationships which are computationally expensive to model; appropriate numerical modelling techniques and options for analyses are presented. Potential methods of harvesting the energy in the acoustic waves are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Stern, B. Schlick-Nolte, Early glass of the ancient world: 1600 BC–AD 50: Ernesto Wolf collection (Verlag Gerd Hatje, Stockholm, 1994)

  2. K.T. Feldman, H. Hirsch, R.L. Carier, J. Acou. Soc. Am. 39, 1236 (1966)

    Article  ADS  Google Scholar 

  3. P.L. Rijke, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science LXXI 17, 419 (1859)

    Google Scholar 

  4. B. Rayleigh, The Theory of Sound, Vol. 2 (Macmillan, 1896)

  5. G. Bisio, G. Rubatto, Energy 24, 117 (1999)

    Article  Google Scholar 

  6. M.P. Mortell, Int. J. Eng. Sci. 9, 175 (1971)

    Article  Google Scholar 

  7. N. Rott, Angew, Math, Phys. 1, 43 (1969)

    MathSciNet  Google Scholar 

  8. J. Wheatley, T. Hofler, G.W. Swift, A. Migliori 74, 153 (2015)

    Google Scholar 

  9. G.W. Swift, J. Acou. Soc. Am. (2003)

  10. R. Sier, Rev. Robert Stirling, DD: A Biography of the Inventor of the Heat Economiser & Stirling Cycle Engine (LA Mair, 1995)

  11. M. Pierens, P. Duthil, 5, 532 (2011), ISSN 2010376X

  12. M.E. Poese, Penn State University – Thermoacoustic refrigeration, http://www.acs.psu.edu/thermoacoustics/refrigeration/faqs.htm

  13. IBM, Implementing Microscale Thermoacoustic Heat and Power Control for Processors and 3D Chipstacks, Patent No. US20140083094 (2012)

  14. Manufacturing Modine Ltd., Thermo-acoustic system, Patent No. WO1999020957 A1, (1998)

  15. Praxair, Thermoacoustic cogeneration system, United States Patent 6604364 (2002)

  16. G. Mozurkewich, A model for transverse heat transfer in thermoacoustic devices, in December conference 1996 (The Acoustical Society of America)

  17. Sounds-Cool, The Ben & Jerry’ s Project (2005), http://www.acs.psu.edu/thermoacoustics/refrigeration/benandjerrys.htm

  18. Clean Power Resources (2015), http://www.cleanpowerresources.com/thermoenergyconversion.php

  19. Honda Motor Co Ltd, Thermoacoustic Engine, Patent No. JP2011231941 (2011)

  20. King Abdul Aziz City for Science and Technology, Standing Wave thermoacoustic/piezoelectric refrigerator, Patent No. US2011252812 (2010)

  21. Toyota Motor Co, Thermoacoustic cooling device, Patent No. JP2007315680 (2005)

  22. Hitachi Ltd., Thermoacoustic heat pump/water heater, Patent No. JP2005188846 (2003)

  23. ASTER, ASTER – Thermoacoustics (2015), http://www.aster-thermoacoustics.com/

  24. J.-P. Thermeau, Thermoacoustics is going to make a lot of Nnnnnnnois. Tech. rep., Institut de Physique Nucléaire d’Orsay (2009)

  25. Score project (2013), http://www.score.uk.com/default.aspx

  26. M. Nouh, O. Aldraihem, A. Baz, Eng. Optimiz. 46, 543 (2013)

    Article  Google Scholar 

  27. M.E.H. Tijani, J.C.H. Zeegers, a.T.a.M. de Waele, J. Acou. Soc. Am. 112, 128 (2002)

    Article  ADS  Google Scholar 

  28. N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Exper. Heat Transfer 28, 267 (2014)

    Article  ADS  Google Scholar 

  29. N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Appl. Acoustics 73, 1052 (2012)

    Article  Google Scholar 

  30. G. Petculescu, L.A. Wilen, J. Acou. Soc. Am. 106, 688 (2014)

    Article  ADS  Google Scholar 

  31. F.S. Nessler, R.M. Keolian, Comparison of a pin stack to a conventional stack in a thermoacoustic prime mover, Ph.D. thesis, 1995

  32. M.E. Hayden, G.W. Swift, J. Acou. Soc. Am. 102, 2714 (1997)

    Article  ADS  Google Scholar 

  33. B.N. Rott, G. Zouzoulas, S. Federal, J. Appl. Math. Phys. 27, 197 (1976)

    Article  Google Scholar 

  34. J.A. Lightfoot, National Center for Physical Acoustics, Ph.D. thesis, University of Mississippi, 1997

  35. F. Zink, H. Waterer, R. Archer, L. Schaefer, Int. J. Therm. Sci. 48, 2309 (2009)

    Article  Google Scholar 

  36. H. Babaei, K. Siddiqui, Energy Conversion Management 49, 3585 (2008)

    Article  Google Scholar 

  37. Q. Tu, C. Wu, Q. Li, F. Wu, F. Guo, Int. J. Eng. Sci. 41, 1337 (2003)

    Article  Google Scholar 

  38. F. Wu, L. Chen, A. Shu, X. Kan, K. Wu, Z. Yang, Cryogenics 49, 107 (2009)

    Article  ADS  Google Scholar 

  39. Z. Yu, a.J. Jaworski, Optimization of thermoacoustic stacks for low onset temperature engines, in Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 224 (2010), p. 329

  40. A. Migliori, G.W. Swift, Appl. Phys. Lett. 53, 355 (1988)

    Article  ADS  Google Scholar 

  41. K.K. Ho, E. Gans, D.D. Shin, G.P. Carman, Integrated Ferroelectrics 101, 89 (2008)

    Article  Google Scholar 

  42. P. Spoor, G. Swift, Phys. Rev. Lett. 85, 1646 (2000)

    Article  ADS  Google Scholar 

  43. A. Campo, M.M. Papari, E. Abu-Nada, Appl. Thermal Eng. 31, 3142 (2011)

    Article  Google Scholar 

  44. N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Int. J. Heat Mass Transfer 64, 1183 (2013)

    Article  Google Scholar 

  45. G.W. Swift, J. Appl. Math. Phys. 84, 1145 (1988)

    Google Scholar 

  46. M.E.H. Tijani, J.C.H. Zeegers, A. De Waele, Cryogenics 42, 49 (2002)

    Article  ADS  Google Scholar 

  47. Y. Liu, T. Xin, Q. Huang, X. Shi, S. Chen, L. Chen, Energy Conversion Management 52, 664 (2011)

    Article  Google Scholar 

  48. B. Ward, G.W. Swift, Design Environment for Low-Amplitude ThermoAcoustic Engines (DeltaE) Tutorial and Users Guide (Version 5.1), Los Alamos National Laboratory (June 2001) (2001)

  49. M. Nouh, O. Aldraihem, A. Baz, J. Dyn. Syst. Meas. Control 136, 061005 (2014)

    Article  Google Scholar 

  50. M.E. Poese, An Evolution of Compact Thermoacoustic Refrigerator Design, Ph.D. thesis, Pennsylvania State University, 2004

  51. D. Sun, K. Wang, X. Zhang, Y. Guo, Y. Xu, L. Qiu, Appl. Energy 106, 377 (2013)

    Article  Google Scholar 

  52. T. Jin, B.S. Zhang, X.M. Zhong, G.B. Chen, Preliminary Study on Circuit Simulation of Thermo Acoustic Engines, in AIP, Vol. 1103 (2014), p. 1

  53. M. Nouh, O. Aldraihem, A. Baz, J. Acou. Soc. Am. 135, 669 (2014)

    Article  ADS  Google Scholar 

  54. P.H. Riley, Procedia Eng. 56, 821 (2013)

    Article  Google Scholar 

  55. D. Marx, P. Blanc-Benon, Comptes Rendus – Mecanique 332, 867 (2004)

    Article  ADS  Google Scholar 

  56. G. Yu, W. Dai, E. Luo, Cryogenics 50, 615 (2010)

    Article  ADS  Google Scholar 

  57. G.Y. Yu, E.C. Luo, W. Dai, J.Y. Hu, J. Appl. Phys. 102, 74901 (2007)

    Article  Google Scholar 

  58. J.H. So, G.W. Swift, S. Backhaus, J. Acou. Soc. Am. 120, 1898 (2006)

    Article  ADS  Google Scholar 

  59. X. Kan, F. Wu, L. Chen, F. Sun, F. Guo, Int. J. Sustainable Energy 29, 220 (2010)

    Article  Google Scholar 

  60. A.J. Organ, The regenerator and the Stirling engine (Mechanical Engineering Publications, London, 1997)

  61. J.R. Olson, G.W. Swift, J. Acou. Soc. Am. 95, 1405 (1994)

    Article  ADS  Google Scholar 

  62. E. Gonen, G. Grossman, Energy Conversion Management 88, 894 (2014)

    Article  Google Scholar 

  63. Z. Yu, A.J. Jaworski, S. Backhaus, Appl. Energy 99, 135 (2012)

    Article  Google Scholar 

  64. M.E. Poese, Handbook of Climate Change Mitigation. Tech. Rep., New York, NY (2012)

  65. J. Smoker, M. Nouh, O. Aldraihem, A. Baz, J. Appl. Phys. 111, 104901 (2012)

    Article  ADS  Google Scholar 

  66. M. Nouh, O. Aldraihem, A. Baz, J. Vibr. Acoustics 134, 061015 (2012)

    Article  Google Scholar 

  67. C. Jensen, R. Raspet, J. Acou. Soc. Am. 128, 98 (2010)

    Article  ADS  Google Scholar 

  68. J.D. Maynard, Anisotropic heat exchanger and stack, Tech. Rep. 0704, Penn State University (2002)

  69. S.M. Grove, University of Plymouth (1985)

  70. J.A. Adeff, T.J. Hofler, A.A. Atchley, W.C. Moss, 104, 32 (2014)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avent, A., Bowen, C. Principles of thermoacoustic energy harvesting. Eur. Phys. J. Spec. Top. 224, 2967–2992 (2015). https://doi.org/10.1140/epjst/e2015-02601-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02601-x

Keywords

Navigation