Skip to main content
Log in

Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods

  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The catastrophic floods recently occurring in Europe warn of the critical need forhydrologic data on floods over long-time scales. Palaeoflood techniques provideinformation on hydrologic variability and extreme floods over long-time intervals(100 to 10,000 yr) and may be used in combination with historical flood data (last1,000 yr) and the gauge record (last 30–50 yr). In this paper, advantages anduncertainties related to the reconstruction of palaeofloods in different geomorphologicalsettings and historical floods using different documentary sources are described.Systematic and non-systematic data can be combined in the flood frequency analysisusing different methods for the adjustment of distribution functions. Technical toolsintegrating multidisciplinary approaches (geologic, historical, hydraulic and statistical)on extreme flood risk assessment are discussed. A discussion on the potential theoreticalbases for solving the problem of dealing with non-systematic and non-stationary data ispresented. This methodology is being developed using new methodological approachesapplied to European countries as a part of a European Commission funded project (SPHERE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, V. R., Kochel, R. C., Patton, P. C., and Pickup, G.: 1983, Paleohydrologic analysis of Holocene flood slack-water sediments, Internat. Assoc. of Sedimentologists Special Publ. 6, 229–239.

    Google Scholar 

  • Baker, V. R., Pickup, G., and Polach, H. A.: 1985, Radiocarbon dating of flood events, Katherine Gorge, Northern Territory, Australia, Geology 13, 344–347.

    Google Scholar 

  • Baker, V. R.: 1989, Magnitude and frequency of palaeofloods, In: K. Beven and P. Carling (eds), Floods, Their Hydrological, Sedimentological and Geomorphological Implications, John Wiley, Chichester, pp. 171–183.

    Google Scholar 

  • Baldwin, C. K. and Lall, U.: 1999, Seasonality of streamflow: the Upper Mississippi River, Water Resour. Res. 35, 1143–1151.

    Google Scholar 

  • Bardsley, W. E.: 1989, Using historical data in nonparametric flood estimation, J. Hydrol. 108, 249–255.

    Google Scholar 

  • Barriendos, M.: 1996–97, El clima histórico de Catalunya (siglos XIV–XIX). Fuentes, métodos y primeros resultados, Revista de Geografía 30–31, 69–96.

    Google Scholar 

  • Barriendos, M. and Martín Vide, J.: 1998, Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean Coastal Area (14th–19th Centuries), Climatic Change 38, 473–491.

    Google Scholar 

  • Benito, G., Machado, Ma.J. and Pérez-González, A.: 1996, Climate change and flood sensitivity in Spain, In: J. Branson, A. G. Brown and K. J. Gregory (eds), Global Continental Changes: The context of Palaeohydrology, Geological Society of London Special Publication No. 115, pp. 85–98.

  • Benito, G., Machado, Ma. J., Pérez-González, A., and Sopeña, A.: 1998, Palaeoflood hydrology of the Tagus river, Central Spain, In: G. Benito, V. R. Baker and K. G. Gregory (eds), Palaeohydrology and Environmental Change, John Wiley, Chichester, pp. 317–333.

    Google Scholar 

  • Benito, G., Sánchez-Moya, Y., Sopeña, A.: 2003, Sedimentology of high-stage flood deposits of the Tagus River, Central Spain, Sediment. Geol. 157, 107–132.

    Google Scholar 

  • Boshoff, P., Kovacs, Z., Van Bladeren, D., and Zawada, P. K.: 1993, Potential benefits from palaeoflood investigation in South Africa, South African Civil Engineer 35, 25–26.

    Google Scholar 

  • Brázdil, R., Glaser, R., Pfister, C., Antoine, J. M., Barriendos, M., Camuffo, D., Deutsch, M., Enzi, S., Guidoboni, E., and Rodrigo, F. S.: 1999, Flood events of selected rivers of Europe in the Sixteenth Century, Climatic Change 43, 239–285.

    Google Scholar 

  • Camuffo, D. and Jones, P. (eds): 2002, Improved understanding of past climatic variability from early daily European instrumental sources, Climatic Change 53, 1–392.

    Google Scholar 

  • Chatters, J. C. and Hoover, K.A.: 1986, Changing later Holocene flooding frequencies on the Columbia River, Washington, Quaternary Res. 26, 309–320.

    Google Scholar 

  • Condie, R. and Lee, K. A.: 1982, Flood frequency analysis with historic information, J. Hydrol. 58, 47–61.

    Google Scholar 

  • Cong, A. and Xu, Y.: 1987, Effect of discharge measurement errors on flood frequency analysis, In: V. P. Singh (ed.), Application of Frequency and Risk in Water Resources, Reidel Publishing Company, pp. 175–190.

  • Dunne, T. and Leopold, L. B.: 1978, Water in Environmental Planning, W. H. Freeman, San Francisco, 818 pp.

    Google Scholar 

  • Ely, L. L.: 1997, Response of extreme floods in the southwestern United States to climatic variations in the late Holocene, Geomorphology 19, 175–201.

    Google Scholar 

  • Ely, L. L., Webb, R. H., and Enzel, Y.: 1992, Dating Historic flood deposits using post-bomb 14C and 137Cs, Quaternary Res. 38, 196–204.

    Google Scholar 

  • Ely, L. L., Enzel, Y., and Cayan, D. R.: 1994, Anomalous North Pacific atmospheric circulation and large winter floods in the southwestern United States, J. Climate 7, 977–987.

    Google Scholar 

  • Ely, L. L., Enzel, Y., Baker, V. R., and Cayan, D. R.: 1993, A 5000-year record of extreme floods and climate change in the southwestern United States, Science 262, 410–412.

    Google Scholar 

  • Ely, L. L., Enzel, Y., Baker, V. R., Kale, V. S., and Mishra, S.: 1996, Changes in the magnitude and frequency of Holocene monsoon floods on the Narmada River, Central India, Geol. Soc. Am. Bull. 108, 1134–1148.

    Google Scholar 

  • Enzel, Y.: 1992, Flood frequency of the Mojave River and the formation of the late Holocene playa lakes, southern California USA, Holocene 2, 11–18.

    Google Scholar 

  • Enzel, Y., Cayan, D. R., Anderson, R. Y., Wells, S. G.: 1989, Atmospheric circulation during Holocene lake stands in the Mojave Desert: evidence of regional climate change, Nature 341, 44–47.

    Google Scholar 

  • Enzel, Y., Ely, L. L., House, P. K., Baker, V. R., and Webb, R. H.: 1993, Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado River basin, Water Resour. Res. 29, 2287–2297.

    Google Scholar 

  • Francés, F.: 1998, Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis, Stoch. Hydrol. Hydraul. 12, 267–283.

    Google Scholar 

  • Francés, F., Salas, J. D., and Boes, D. C.: 1994, Flood frequency analysis with systematic, historical and paleoflood data based on the GEV model, Water Resour. Res. 30, 1653–1664.

    Google Scholar 

  • García, R., Gimeno, L., Hernández, E., Prieto, R., and Ribera, P.: 2000, Reconstructing the North Atlantic atmospheric circulation in the 16th, 17th and 18th centuries from historical sources, Climate Res. 14, 147–151.

    Google Scholar 

  • Glaser, R.: 1996, Data and methods of climatological evaluation in historical climatology, Historical Social Research 21, 56–88.

    Google Scholar 

  • Greenbaum, N., Schick, A. P., and Baker, V. R.: 2000, The palaeoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel, Earth Surf. Proc. Land. 25, 951–971.

    Google Scholar 

  • Hirschboeck, K. K.: 1991, Climate and floods, In: National Water Summary 1988–1989, Floods and Droughts: Hydrologic Perspectives on Water Issues, US Geol. Surv. Water-Sup. Paper 2375, pp. 67–88.

  • House, P. K., Webb, R. H., Baker, V. R., and Levish, D. R. (eds): 2002, Ancient Floods, Modern Hazards: Principles and Applications of Palaeoflood Hydrology, Water Science and Application, Vol. 5, American Geophysical Union, 385 pp.

  • IPCC: 2001, In: R. T. Watson and the Core Writing Team (eds), Climate Change 2001: Synthesis Report. A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK, 398 pp.

    Google Scholar 

  • Jarret, R. D.: 1990, Paleohydrologic techniques used to define the spatial occurrence of floods, Geomorphology 3, 181–195.

    Google Scholar 

  • Jarret, R. D.: 1991, Paleohydrology and its value in analyzing floods and droughts, US Geol. Surv. Water-Sup. Paper 2375, 105–116.

    Google Scholar 

  • Kale, V. S., Ely, L. L., Enzel, Y., and Baker, V. R.: 1994, Geomorphic and hydrologic aspects of monsoon floods in the Narmada and Tapi rivers in central India, Geomorphology 10, 157–168.

    Google Scholar 

  • Knox, J. C.: 1985, Responses of floods to Holocene climatic change in the upper Mississippi Valley, Quaternary Res. 23, 287–300.

    Google Scholar 

  • Knox, J. C.: 1993, Large increases in flood magnitude in response to modest changes in climate, Nature 361, 430–432.

    Google Scholar 

  • Knox, J. C.: 2000, Sensitivity of modern and Holocene floods to climate change, Quaternary Sci. Rev. 19, 439–457.

    Google Scholar 

  • Kochel, R. C., Baker, V. R., Patton, P. C.: 1982, Paleohydrology of Southwestern Texas, Water Resour. Res. 18, 1165–1183.

    Google Scholar 

  • Lane, W. L. and Cohn, T. A.: 1996, Expected moments algorithm for flood frequency analysis, North American Water and Environment Congress '96, June 22–28, Anaheim, Ca, USA, 6 pp.

  • Levish, D. R., Ostenaa, D. A., and O'Connel, D. R. H.: 1997, Paleoflood Hydrology and dam safety, In: Proceedings of the International Conference on Hydropower, Waterpower '97, August 5–8, 1997, Atlanta, GA, pp. 2205–2214.

  • Levish, D. R.: 2002, Palaeohydrologic bounds — non-exceedance information for flood hazard assessment, In: P. K. House, R. H. Webb, V. R. Baker and D. Levish (eds), Ancient Floods, Modern Hazards: Principles and Applications of Palaeoflood Hydrology, Water Science and Application, Vol. 5, American Geophysical Union, pp. 175–190.

  • Llasat, M. C.: 1997, Meteorological conditions of heavy rains, UNESCO: FRIEND Flow Regimes from International Experimental and Network Data. Third report: 1994–1997, pp. 269–276.

  • Mook, W. G. and Waterbolk, H. T.: 1985, Radiocarbon Dating, Handbooks for Archaeologists No. 3, European Science Foundation, Strasbourg, 65 pp.

    Google Scholar 

  • Munich Re Group: 2000, Welt der Naturgefahren/World of Natural Hazards, Münchener Rückversicherungs-Gesellschaft, Munich, CD-ROM.

  • O'Connell, D. O., Levish, D. R., and Ostenaa, D.: 1997, Bayesian flood frequency analysis with paleohydrologic bounds for late Holecene paleofloods, Santa Ynez River, California, In: E. C. Gruntfest (ed.), Twenty Years Later: What We Have Learned Since the Big Thompson Flood, Special Publication 33, Natural Hazards Research and Applications Information Center, University of Colorado, pp. 183–196.

  • O'Connor, J. E., Ely, L. L., Wohl, E. E., Stevens, L. E., Meli, T. S., Kale, V. S., Baker, V. R.: 1994, 4000-year record of large floods on the Colorado River in the Grand Canyon, J. Geol. 102, 1–9.

    Google Scholar 

  • Ouarda, T. B. M. J., Rasmussen, P. F., Bobée, B., and Bernier, J.: 1998, Use of historical information in hydrologic frequency analysis, Water Sciences Journal/Revue des Sciences de l'Eau 11, 41–49.

    Google Scholar 

  • Partridge, J. and Baker, V. R.: 1987, Palaeoflood hydrology of the Salt River, Arizona, Earth Surf. Proc. Land. 12, 109–125.

    Google Scholar 

  • Patton, P. C., Baker, V. R., and Kochel, R. C.: 1979, Slackwater deposits: a geomorphic technique for the interpretation of fluvial palaeohydrology, In: D. D. Rhodes and G. P. Williams (eds), Adjustments of the Fluvial System, Kendall-Hunt, Dubuque, IO, USA, pp. 225–252.

    Google Scholar 

  • Pickup, G., Allan, G., and Baker, V. R.: 1988, History, paleochannels and paleofloods of the Finke river, Central Australia, In: Warner, R.F. (ed.), Fluvial Geomorphology of Australia, Academic Press, Sydney, pp. 177–200.

    Google Scholar 

  • Porporato, A. and Ridolfi, L.: 1998, Influence of weak trends on exceedance probability, Stoch. Hydrol. Hydraul. 12, 1–14.

    Google Scholar 

  • Potter, K.W. and Walker, J. F.: 1981, A model of discontinuous measurement error and its effects on the probability distribution of flood discharge measurements, Water Resour. Res. 17, 1505–1509.

    Google Scholar 

  • Redmond, K. T., Enzel, Y., House, P. K., and Biondi, F.: 2002, Climate impact on flood frequency at the decadal to millennial time scales, In: P. K. House, R. H. Webb, V. R. Baker and D. Levish (eds), Ancient Floods, Modern Hazards: Principles and Applications of Palaeoflood Hydrology, Water Science and Application, Vol. 5, American Geophysical Union, pp. 21–45.

  • Sánchez Rodrigo, F., Esteban-Parra, M.J. and Castro-Díez, Y.: 1995, The onset of the Little Ice Age in Andalusia (Southern Spain): Detection and characterisation from documentary sources, Annales Geophysicae 13, 330–338.

    Google Scholar 

  • Stedinger, J. R. and Baker, V. R.: 1987, Surface water hydrology: historical and paleoflood information, Rev. Geophys. 25, 119–124.

    Google Scholar 

  • Stuiver, M.: 1978, Radiocarbon timescale tested against magnetic and other dating methods, Nature 273, 271–274.

    Google Scholar 

  • Thorndycraft, V. R., Benito, G., Barriendos, M., and Llasat, M. C. (eds.): 2003, Palaeofloods, Historical Data and Climatic Variability: Applications in Flood Risk Assessment, CSIC, Madrid, 372 pp.

    Google Scholar 

  • U.S. Water Resources Council: 1982, Guidelines for Determining Flood Flow Frequency, U.S. Interagency Advisory Committee on Water Data, Hydrology Subcommittee, Bulletin 17B, Washington D.C., 28 pp.

    Google Scholar 

  • Van Gelder, P. H. A. J. M.: 1996, A new statistical model for extreme water levels along the Dutch coast, In: K. S. Tickle, I. C. Goulter, C. Xu, S. A. Wasimi, and F. Bouchart (eds), Stochastic Hydraulics '96, Balkema, Rotterdam, pp. 243–249.

    Google Scholar 

  • Wang, Q. J.: 1990, Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution, J. Hydrol. 120, 115–124.

    Google Scholar 

  • Webb, R. H. and Betancourt, J. L.: 1990, Climatic Variability and Flood Frequency of the Santa Cruz River, Pima County, Arizona, US Geological Survey, Open-File Report 90-553, 69 pp.

  • Webb, R. H., O'Connor, J. E., and Baker, V. R.: 1988, Paleohydrologic reconstruction of flood frequency on the Escalante River, South-Central Utah, In: R. V. Baker, R. C. Kochel and P. C. Patton (eds), Flood Geomorphology, Wiley, New York, pp. 403–418.

    Google Scholar 

  • Wells, L. E.: 1990, Holocene history of the El Niño phenomenon as recorded in flood sediments of the northern coastal Peru, Geology 18, 1134–1137.

    Google Scholar 

  • Yang, D., Yu, G., Xie, Y., Zhan, D., and Zhijia, L.: 2000, Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China, Geomorphology 33, 73–88.

    Google Scholar 

  • Zawada, P. K.: 1997, Paleoflood hydrology: method and application in flood-prone southern Africa, South Africa Journal of Science 93, 111–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benito, G., Lang, M., Barriendos, M. et al. Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods. Natural Hazards 31, 623–643 (2004). https://doi.org/10.1023/B:NHAZ.0000024895.48463.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NHAZ.0000024895.48463.eb

Navigation