Skip to main content
Log in

The nerve-muscle synapse of the garter snake

  • Published:
Journal of Neurocytology

Abstract

Snake nerve-muscle preparations are well-suited for study of both motor innervation patterns at the systems level and NMJ function at the cellular level. Their small size (∼100 myofibers) and thinness (one fiber) allows access to all NMJs in one muscle. Snake NMJs are of three types, two twitch subtypes and a single tonic type. Properties of the NMJs supplied by a particular motor neuron, and of the motor unit fibers they innervate, are precisely regulated by the motor neuron in a manner consistent with the Henneman Size Principle. Unlike its amphibian or mammalian cousins, the snake NMJ comprises ∼50 (twitch) or ∼20 (tonic) individual one-bouton synapses, similar to synapses found in the central nervous system. Each bouton releases a few quanta per stimulus. Larger fibers, which require more synaptic current to initiate contraction, receive nerve terminals that contain more boutons and express receptor patches with higher sensitivity to transmitter. Quantal analysis suggests that transmitter release sites in one bouton do not behave independently; rather, they may cooperate to reduce fluctuations and enhance reliability. After release, two mechanisms coexist for retrieval and reprocessing of spent vesicles–one involving clathrin-mediated endocytosis, the other macropinocytosis. Unanswered questions include how each mechanism is regulated in a use-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARAVANIS, A. M., PYLE, J. L. & TSIEN, R. W. (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 64–647.

    PubMed  Google Scholar 

  • BECHERER U., GUATIMOSIM, C. & BETZ, W. (2001) Effects of staurosporine on exocytosis and endocytosis at frog motor nerve terminals. Journal of Neuroscience 21, 78–787.

    PubMed  Google Scholar 

  • BIRKS, R., HUXLEY, H. E. & KATZ, B. (1960) The fine structure of the neuromuscular junction of the frog. Journal of Physiology (London) 150, 13–144.

    Google Scholar 

  • CHEN, B. M. & GRINNELL, A. D. (1995) Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269, 157–1580.

    PubMed  Google Scholar 

  • COLE, J. C., VILLA, B. R. & WILKINSON R. S. (2000) Distuption of actin impedes transmitter release in snake motor terminals. Journal of Physiology (London) 525, 57–586.

    Google Scholar 

  • CONNOR E. A., DUNAESKY, A., GRIFFITHS, D. J., HARDWICK, J. C. & PARSONS, R. L. (1997) Transmitter release differs at snake twitch and tonic endplates during potassium-induced nerve terminal depolarization. Journal of Neurophysiology 77, 74–760.

    PubMed  Google Scholar 

  • CONNOR, E. A., FIEKERS, J. F., NEEL, D. S., PARSONS, R. L. & SCHNITZLER, R. M. (1984) Comparison of cholinergic activation and desensitization at snake twitch and slow muscle fibre end-plates. Journal of Physiology (London) 351, 65–674.

    Google Scholar 

  • DAVID, G., BARRETT, J. N. & BARRETT, E. F. (1998) Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. Journal of Physiology (London) 509, 5–65.

    Google Scholar 

  • DEL CASTILLO, J. & KATZ, B. (1954) Quantal components of the end-plate potential. Journal of Physiology (London) 124, 56–573.

    Google Scholar 

  • DIONNE, V. E. & PARSONS, R. L. (1978) Synaptic channel gating differences at snake twitch and slow neuromuscular junctions. Nature 274, 90–904.

    PubMed  Google Scholar 

  • DIONNE, V. E. & PARSONS, R. L. (1981) Characteristics of the acetylcholine-operated channel at twitch and slow fibre neuromuscular junctions of the garter snake. Journal of Physiology (London) 310, 14–158.

    Google Scholar 

  • EMONET-DENAND, F., HUNT, C. C., PETIT, J. & POLIN, B. (1988) Proportion of fatigue-resistant motor units in hindlimb muscles of cat and their relation to axonal conduction velocity. Journal of Physiology (London) 400, 13–158.

    Google Scholar 

  • FATT, P. & KATZ, B. (1951) An analysis of the end-plate potential recorded with an intracellular electrode. Journal of Physiology (London) 115, 32–370.

    Google Scholar 

  • HAMMOND, G. R. & RIDGE, R. M. (1978) Post-tetanic potentiation of twitch motor units in snake costocutaneous muscle. Journal of Physiology (London) 276, 53–554.

    Google Scholar 

  • HARLOW, M. L., RESS, D., STOSCHEK, A., MARSHALL, R. M. & MCMAHAN, U. J. (2001) The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 47–484.

    PubMed  Google Scholar 

  • HEIDELBERGER, R., ZHOU, A. Y. & MATTHEWS, G. (2002) Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. Journal of Neurophysiology 88, 250–2517.

    PubMed  Google Scholar 

  • HENNEMAN, E. (1957) Relation between size of neurons and their susceptibility to discharge. Science 126, 1345.

    PubMed  Google Scholar 

  • HESS, A. (1965) The sarcoplasmic reticulum, the T system, and the motor terminals of slow and twitch muscle fibers in the garter snake. Journal of Cell Biology 26, 46–476.

    PubMed  Google Scholar 

  • HEUSER, J. E. (1990) The role of coated vesicles in recycling of synaptic vesicle membrane. In Neurotransmitter release: The neuromuscular junction (edited by CLEMENTI, F. & MELDOLESI, J.) pp. 8–96. San Diego: Academic Press.

    Google Scholar 

  • HOLT, W., COOKE, A., WU, M. M. & LAGNADO, L. (2003) Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. Journal of Neuroscience 23, 132–1339.

    PubMed  Google Scholar 

  • KATZ, B. (1996) Neural transmitter release: From quantal secretion to exocytosis and beyond. The Fenn Lecture. Journal of Neurocytology 12, 67–686.

    Google Scholar 

  • KATZ, B. & THESLEFF, S. (1957) On the factors which determine the amplitude of the 'miniature end-plate potential'. Journal of Physiology (London) 137, 26–278.

    Google Scholar 

  • KO, C. P. (1984) Regeneration of the active zone at the frog neuromuscular junction. Journal of Cell Biology 98, 168–1695.

    PubMed  Google Scholar 

  • KO, C. P. (1987) Alectin, peanut agglutinin, as a probe for the extracellular matrix in living neuromuscular junctions. Journal of Neurocytology 16, 56–576.

    PubMed  Google Scholar 

  • KOENIG, J. H. & IKEDA, K. (1996) Synaptic vesicles have two distinct recycling pathways. Journal of Cell Biology 135, 79–808.

    PubMed  Google Scholar 

  • KORN, H. & FABER, D. S. (1991) Quantal analysis and synaptic efficacy in the CNS. Trends in Neurosciences 14, 43–445.

    PubMed  Google Scholar 

  • KUFFLER, S. W. & YOSHIKAMI, D. (1975a) The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: Iontophoretic mapping in the micron range. Journal of Physiology (London) 244, 70–730.

    Google Scholar 

  • KUFFLER, S. W. & YOSHIKAMI, D. (1975b) The number of transmitter molecules in a quantum: An estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. Journal of Physiology (London) 251, 46–482.

    Google Scholar 

  • KUNO, M, TURKANIS, S. A. & WEAKLY, J. N. (1971) Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog. Journal of Physiology (London) 213, 54–556.

    Google Scholar 

  • KUROMI, H. & KIDOKORO, Y. (1998) Two distinct pools of synaptic vesicles in single presnaptic boutons in temperature-sensitive Drosophila mutant, shibire. Neuron 20, 91–925.

    PubMed  Google Scholar 

  • LICHTMAN, J. W., WILKINSON, R. S. & RICH, M. (1985) Multiple innervation of tonic endplates revealed by activity dependent uptake of fluorescent probes. Nature 314, 35–359.

    PubMed  Google Scholar 

  • LICHTMAN, J. W. & WILKINSON, R. S. (1987) Properties of motor units in the transversus abdominis muscle of the garter snake. Journal of Physiology (London) 393, 35–374.

    Google Scholar 

  • LICHTMAN, J. W., SUNDERLAND, W. & WILKINSON, R. S. (1989) Highresolution imaging of synaptic structure with a simple confocal microscope. The New Biologist 1, 7–82.

    PubMed  Google Scholar 

  • MIWA, J. M., IBANEZ-TALLON, I, CRABTREE, G. W., SANCHEZ, R., SALI, A., ROLE, L. W. & HEINTZ, N. (1999) lynx1, anendogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23, 10–114.

    PubMed  Google Scholar 

  • MIYAMOTO, M. D. (1986) Probability of quantal transmitter release from nerve terminals: Theoretical considerations in the determination of spatial variation. Journal of Theoretical Biology 123, 28–304.

    PubMed  Google Scholar 

  • NEMETH, P. M., ROSSER, B. W. C. & WILKINSON, R. S. (1991) Metabolic and contractile uniformity of isolated motor unit fibres of snake muscle. Journal of Physiology (London) 434, 4–55.

    Google Scholar 

  • NEMETH, P. M. & WILKINSON, R. S. (1990) Metabolic uniformity of the motor unit. In The Dynamic State of Muscle Fibers (edited by PETTE, D.) pp. 23–245.

  • NEVES, G., GOMIS, A. & LAGNADO, I. (2001) Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proceedings of the National Academy of Sciences of the United States of America 98, 1528–15287.

    PubMed  Google Scholar 

  • PAILLART, C., LI, J., MATTHEWS, G. & STERLING, P. (2003) Endocytosis and vesicle recycling at a ribbon synapse. Journal of Neuroscience 23, 409–4099.

    PubMed  Google Scholar 

  • PETIT, J., CHUA, M. & HUNT, C. C. (1993) Maximum shortening speed of motor units of various types in cat lumbrical muscles. Journal of Neurophysiology 69, 44–448.

    PubMed  Google Scholar 

  • RICHARDS, D. A., GUATIMOSIM, C. & BETZ, W. J. (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 55–559.

    PubMed  Google Scholar 

  • RIDGE, R. M. A. P. (1971) Different types of extrafusal muscle fibres in snake costocutaneous muscle. Journal of Physiology (London) 217, 39–418.

    Google Scholar 

  • ROBINSON, A. J. (1987) Spatial distribution of twitch and tonic fibres in a snake muscle one myofiber thick. Anatomical Record 217, –7.

    PubMed  Google Scholar 

  • RYAN, T. A. (1999) Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. Journal of Neuroscience 19, 131–1323.

    PubMed  Google Scholar 

  • SARGENT, P. B., HEDGES, B. E., TSAVALER, L., CLEMMONS L., TZARTOS, S. & LINDSTROM, J. M. (1984) Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies. Journal of Cell Biology 98, 60–618.

    PubMed  Google Scholar 

  • SCOTT, L. J., BACOU, F. & SANES, J. R. (1988) A synapse specific carbohydrate at the neuromuscular junction: Association with acetylcholinesterase and a glycolipid. Journal of Neuroscience 8, 93–944.

    PubMed  Google Scholar 

  • SMITH, C. B. & BETZ, W. J. (1996) Simultaneous independent measurement of endocytosis and exocytosis. Nature 380, 53–534.

    PubMed  Google Scholar 

  • SUN, J. Y., WU, X. S. & WU, L. G. (2002) Single and multiple vesicle fusion induce different rates of endocytosis a central synapse. Nature 417, 55–559.

    PubMed  Google Scholar 

  • TAKACS, Z., WILHELMSEN, K. C. & SOROTA, S. (2001) Snake ?-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor is conserved. Molecular Biology and Evolution 18, 180–1809.

    PubMed  Google Scholar 

  • TENG, H., COLE, J. C., ROBERTS, R. L. & WILKINSON, R. S. (1999) Endocytic active zones: Hot spots for endocytosis in vertebrate neuromuscular terminals. Journal of Neuroscience 19, 485–4866.

    PubMed  Google Scholar 

  • TENG, H. & WILKINSON, R. S. (2000) Clathrin-mediated endocytosis near active zones in snake motor boutons. Journal of Neuroscience 20, 798–7993.

    PubMed  Google Scholar 

  • TENG, H. & WILKINSON, R. S. (2002) Endocytosis is directly regulated by intracellular Ca++ in snake motor. Program No. 439.8. 2002 AbstractViewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2002. CD-ROM.

    Google Scholar 

  • TENG, H. & WILKINSON, R. S. (2003) "Delayed'' endocytosis is regulated by extracellular Ca2+ in snake motor boutons. Journal of Physiology (London) 551, 10–114.

    Google Scholar 

  • TURKANIS, S. A. (1973) Effects of muscle stretch on transmitter release at end-plates of rat diaphragm and frog sartorius muscle. Journal of Physiology 230, 39–403.

    PubMed  Google Scholar 

  • VAN DER KLOOT, W. & MOLGO, J. (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiological Review 74, 89–991.

    Google Scholar 

  • VON GERSDORFF, H. & MATTHEWS, G. (1994) Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 65–655.

    PubMed  Google Scholar 

  • WALROND, J. P. & REESE, T. S. (1985) Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers. Journal of Neuroscience 5, 111–1131.

    PubMed  Google Scholar 

  • WILKINSON, R. S. & LICHTMAN, J. W. (1985) Regular alternation of fiber types in the transversus abdominis muscle of the garter snake. Journal of Neuroscience 5, 297–2988.

    PubMed  Google Scholar 

  • WILKINSON and TENG WILKINSON, R. S. & LUNIN, S. D. (1994) Properties of "reconstructed'' motor synapses of the garter snake. Journal of Neuroscience 14, 331–3332.

    PubMed  Google Scholar 

  • WILKINSON, R. S., LUNIN, S. D. & STEVERMER, J. J. (1992) Regulation of single quantal efficacy at the snake neuromuscular junction. Journal of Physiology (London) 448, 41–436.

    Google Scholar 

  • WILKINSON, R. S. & NEMETH, P. M. (1989) Metabolic fiber types of snake transversus abdominis muscle. American Journal of Physiology 256, C117–C1183.

    PubMed  Google Scholar 

  • WILKINSON, R. S., ROSSER, B. W. C., NEMETH, P. M. & SWEENEY, H. L. (1991) Metabolic capacity and myosin expression in single muscle fibres of the garter snake. Journal of Physiology (London) 440, 11–129.

    Google Scholar 

  • WILKINSON, R. S., SON, Y. J. & LUNIN, S. D. (1996) Release properties of isolated neuromuscular boutons of the garter snake. Journal of Physiology (London) 495, 50–514.

    Google Scholar 

  • WU, L. G. & BETZ, W. J. (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 76–779.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, R.S., Teng, H. The nerve-muscle synapse of the garter snake. J Neurocytol 32, 523–538 (2003). https://doi.org/10.1023/B:NEUR.0000020608.82235.3e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020608.82235.3e

Keywords

Navigation