Skip to main content
Log in

Structural determinants of the reliability of synaptic transmission at the vertebrate neuromuscular junction

  • Published:
Journal of Neurocytology

Abstract

The reliability of neuromuscular transmission depends on the size and molecular organization of the neuromuscular junction. Comparative studies show that the quantal release per unit area is similar at neuromuscular junctions in a number of species in spite of wide variation in synaptic area. They also show an inverse relationship between the size of the nerve terminal and the extent of postsynaptic folding. Evidence is presented supporting the view that the folds, and the voltage-gated sodium channels present in them, effectively amplify synaptic currents.

How are the size and molecular organization of the neuromuscular junction determined? Studies with botulinum toxin, including our new work on humans, reveal striking ‘adaptive plasticity’ of the nerve terminal. However, the links between synaptic size and effective transmission remain unclear. On the postsynaptic side, we have shown that mRNA encoding sodium channels is concentrated at the adult junction. During development, mRNA accumulates just before the protein it encodes. Throughout development the sodium channels are associated with ankyrinG and both proteins are initially excluded from the junctional acetylcholine receptor cluster, possibly accounting for the formation of the boundary between the domains occupied by the two key postsynaptic ion channels.

These findings have important clinical implications. Reduced transmitter release may result from small nerve terminals as much as from defective release. Abnormal folding is likely to reduce the reliability of transmission. A better understanding of how the structural features that influence the reliability of the neuromuscular transmission are controlled should be of general interest to neuroscientists and of use to clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALDERSON, K., HOLDS, J. B. & ANDERSON, R. L. (1991) Botulinum-induced alteration of nerve-muscle interactions in the human orbicularis oculi following treatment for blepharospasm. Neurology 41, 180–1805.

    PubMed  Google Scholar 

  • ANDERSON, M. J. & COHEN, M. W. (1977) Nerve induce and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. 268, 75–773.

    PubMed  Google Scholar 

  • AWAD, S. S., BUCKEL, A., LIGHTOWLERS, R. N., LØMO, T., STOCKSLEY, M. A., WOOD, S. J., YOUNG, C. & SLATER, C. R. (1999) Accumulation of voltage-gated sodium channels at rat neuromuscular junctions. Society for Neuroscience Abstracts 25, 1021.

    Google Scholar 

  • AWAD, S. S., BUCKEL, A., YOUNG, C., BRENNER, H. R. & SLATER, C. R. (2003) Accumulation of sodium channels at postsynaptic sites in rat muscles regenerating in the absence of the nerve is associated with a local increase in abundance of their mRNAs. British Neuroscience Association Abstracts 17, P101.

    Google Scholar 

  • AWAD, S. S., LIGHTOWLERS, R. N., YOUNG, C., CHRZANOWSKA-LIGHTOWLERS, Z. M., LØMO, T. & SLATER, C. R. (2001) Sodium channel mRNAs at the neuromuscular junction: Distinct patterns of accumulation and effects of muscle activity. J. Neurosci. 21, 845–8463.

    PubMed  Google Scholar 

  • BAILEY, S. J., STOCKSLEY, M. A., BUCKEL, A., YOUNG, C. & SLATER, C. R. (2003) NaV1 channels and ankyrinG occupy a different postsynaptic domain from AChRs from an early stage of neuromuscular junction maturation in rats. J. Neurosci. 23, 210–2111.

    PubMed  Google Scholar 

  • BALICE-GORDON, R. J., BREEDLOVE, S. M., BERNSTEIN, S. & LICHTMAN, J. W. (1990) Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: In vivo observations in the androgen-sensitive bulbocavernosus muscle of mice. J. Neurosci. 10, 266–2671.

    PubMed  Google Scholar 

  • BALICE-GORDON, R. J. & LICHTMAN, J. W. (1993) In vivo observations of pre-and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J. Neurosci. 13, 83–855.

    PubMed  Google Scholar 

  • BANNER, L. R. & HERRERA, A. A. (1986) Differences in synaptic efficacy at neuromuscular junctions in frog twitch muscles. J. Physiol. 379, 20–215.

    PubMed  Google Scholar 

  • BEAM, K. G., CALDWELL, J. H. & CAMPBELL, D. T. (1985) Na channels in skeletal muscle concentrated near the neuromuscular junction. Nature 313, 58– 590

    PubMed  Google Scholar 

  • BETZ, W. J., CALDWELL, J. H. & KINNAMON, S. C. (1984) Increased sodium conductance in the synaptic region of rat skeletal muscle fibres. J. Physiol. 352, 18– 202.

    PubMed  Google Scholar 

  • BEVAN, S. & STEINBACH, J. H. (1977) The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J. Physiol. 267, 19–213.

    PubMed  Google Scholar 

  • BEWICK, G. S., YOUNG, C. & SLATER, C. R. (1996) Spatial relationships of utrophin, dystrophin, betadystroglycan and beta-spectrin to acetylcholine receptor clusters during postnatal maturation of the rat neuromuscular junction. J. Neurocytol. 25, 36–379.

    PubMed  Google Scholar 

  • BEZAKOVA, G. & LØMO, T. (2001) Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers. J. Cell Biol. 153, 145–1463.

    PubMed  Google Scholar 

  • BIGLAND-RITCHIE, B., KUKULKA, C. G., LIPPOLD, O. C. & WOODS, J. J. (1982) The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. J. Physiol. (Lond.) 330, 26–278.

    Google Scholar 

  • BIGNAMI, F., CAMUS, G., MARCHAND, S., BAILLY, L., STETZKOWSKI-MARDEN, F. & CARTAUD, J. (1998) Targeting of acetylcholine receptor and 43 kDa rapsyn to the postsynaptic membrane in Torpedo marmorata electrocyte. J. Physiol. Paris 92, 17–181.

    PubMed  Google Scholar 

  • BOYD, I. A. & MARTIN, A. R. (1956) The end-plate potentialin mammalian muscle. J. Physiol. (Lond.) 132, 7–91.

    Google Scholar 

  • BRAITHWAITE, A. W. & HARRIS, A. J. (1979) Neural influence on acetylcholine receptor clusters in embryonic development of skeletal muscles. Nature 279, 54–551.

    PubMed  Google Scholar 

  • BRENNER, H. R., WITZEMANN, V. & SAKMANN, B. (1990) Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature 344, 54–547.

    PubMed  Google Scholar 

  • BROWN, M. C., GOODWIN, S. & IRONTON, R. (1977) Prevention of motor nerve sprouting in botulinum toxin poisoned mouse soleus muscles by direct stimulation of the muscle. J. Physiol. (Lond.) 248, 44P-45P.

    Google Scholar 

  • BROWN, M. C., HOLLAND, R. L. & HOPKINS, W. G. (1981) Motor nerve sprouting. Annu. Rev. Neurosci. 4, 1–42.

    PubMed  Google Scholar 

  • CALDWELL, J. H., CAMPBELL, D. T. & BEAM, K. G. (1986) Na channel distribution in vertebrate skeletal muscle. J. Gen. Physiol. 87, 90–932.

    PubMed  Google Scholar 

  • CARONI, P., SCHNEIDER, C., KIEFER, M. C. & ZAPF, J. (1994) Role of muscle insulin-like growth factors in nerve sprouting: Suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J. Cell Biol. 125, 89–902.

    PubMed  Google Scholar 

  • CASTONGUAY, A., LEVESQUE, S. & ROBITAILLE, R. (2001) Glial cells as active partners in synaptic functions. Prog. Brain Res. 132, 22–240.

    PubMed  Google Scholar 

  • CATTERALL, W. A. (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S1–S48.

    PubMed  Google Scholar 

  • COHEN, I., RIMER, M., LØMO, T. & MCMAHAN, U. J. (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol. Cell Neurosci. 9, 23–253.

    PubMed  Google Scholar 

  • COOPER, S. (1966) Muscle spindles and motor units. In Control and innervation of skeletal muscle (edited by Andrew) pp. –16. Dundee: University of St. Andrews.

    Google Scholar 

  • COURTNEY, J. & STEINBACH, J. H. (1981) Age changes in neuromuscular junction morphology and acetylcholine receptor distribution on rat skeletal muscle fibres. J. Physiol. 320, 43–447.

    PubMed  Google Scholar 

  • COUTEAUX, R. & PECOT-DECHAVASSINE, M. (1970) Vesicules synaptiques et poches au niveau des 'zones actives' de la jonction neuromusculaire. Comptes rendus des seances de l'Academie des Sciences 271, 234–2349.

    Google Scholar 

  • DE PAIVA, A., MEUNIER, F. A., MOLGO, J., AOKI, K. R. & DOLLY, J. O. (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: Biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl. Acad. Sci. USA 96, 320–3205.

    PubMed  Google Scholar 

  • DECONINCK, A. E., POTTER, A. C., TINSLEY, J. M., WOOD, S. J., VATER, R., YOUNG, C., METZINGER, L., VINCENT, A., SLATER, C. R. & DAVIES, K. E. (1997) Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice. J. Cell Biol. 136, 88–894.

    PubMed  Google Scholar 

  • DODGE, F. A., JR. & RAHAMIMOFF, R. (1967) Cooperative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193, 41–432.

    PubMed  Google Scholar 

  • DUCHEN, L. W. (1970) Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: Differences between fast and slow muscles. J. Neurol. Neurosurg. Psychiatry 33, 4–54.

    PubMed  Google Scholar 

  • ELMQVIST, D. & QUASTEL, D. M. (1965) A quantitative study of end-plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 50–529.

    Google Scholar 

  • ENGEL, A. G., OHNO, K. & SINE, S. M. (2003) Congenital myasthenic syndromes: Progress over the past decade. Muscle Nerve 27, –25.

    Google Scholar 

  • ENGEL, A. G., WALLS, T. J., NAGEL, A. & UCHITEL, O. (1990) Newly recognized congenital myasthenic syndromes: I. congenital paucity of synaptic vesicles and reduced quantal release. ii. high-conductance fast-channel syndrome. iii. abnormal acetylcholine receptor (achr) interaction with acetylcholine. iv. achr deficiency and short channel-open time. Prog. Brain Res. 84, 12–137.

    PubMed  Google Scholar 

  • FAWCETT, P. R., SLATER, C. R., WALLS, T. J., LYONS, P. R. & YOUNG, C. (1995) Congenital myasthenia: A clinical and in vitro study of 11 cases. Electroencephalog. Clin. Neurophysiol. 97, S45.

    Google Scholar 

  • FERTUCK, H. C. & SALPETER, M. M. (1974) Localization of acetylcholine receptor by 125I-labeled alphabungarotoxin binding at mouse motor endplates. Proc. Natl. Acad. Sci. U.S.A. 71, 137–1378.

    PubMed  Google Scholar 

  • FLUCHER, B. E. & DANIELS, M. P. (1989) Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron 3, 16–175.

    PubMed  Google Scholar 

  • FONTAINE, B., SASSOON, D., BUCKINGHAM, M. & CHANGEUX, J. P. (1988) Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 7, 60–609.

    PubMed  Google Scholar 

  • FUKUNAGA, H., ENGEL, A. G., LANG, B., NEWSOMDAVIS, J. & VINCENT, A. (1983) Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc. Natl. Acad. Sci. U.S.A. 80, 763–7640.

    PubMed  Google Scholar 

  • FUKUOKA, T., ENGEL, A. G., LANG, B., NEWSOMDAVIS, J., PRIOR, C. & WRAY, D. W. (1987) Lambert-Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones. Ann. Neurol. 22, 19–199.

    PubMed  Google Scholar 

  • GAUTAM, M., DECHIARA, T. M., GLASS, D. J., YANCOPOULOS, G. D. & SANES, J. R. (1999) Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain Res. Dev. Brain Res. 114, 17–178.

    PubMed  Google Scholar 

  • GAUTAM, M., NOAKES, P. G., MUDD, J., NICHOL, M., CHU, G. C., SANES, J. R. & MERLIE, J. P. (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 23–236.

    PubMed  Google Scholar 

  • GEE, S. H., MADHAVAN, R., LEVINSON, S. R., CALDWELL, J. H., SEALOCK, R. & FROEHNER, S. C. (1998) Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J. Neurosci. 18, 12– 137.

    PubMed  Google Scholar 

  • GERTLER, R. A. & ROBBINS, N. (1978) Differences in neuromuscular transmission in red and white muscles. Brain Res. 142, 16–164.

    PubMed  Google Scholar 

  • GLASS, D. J., BOWEN, D. C., STITT, T. N., RADZIEJEWSKI, C., BRUNO, J., RYAN, T. E., GIES, D. R., SHAH, S., MATTSSON, K., BURDEN, S. J., DISTEFANO, P. S., VALENZUELA, D. M., DECHIARA, T. M. & YANCOPOULOS, G. D. (1996) Agrin acts via a MuSK receptor complex. Cell 85, 51–523.

    PubMed  Google Scholar 

  • GOLDIN, A. L., BARCHI, R. L., CALDWELL, J. H., HOFMANN, F., HOWE, J. R., HUNTER, J. C., KALLEN, R. G., MANDEL, G., MEISLER, M. H., NETTER, Y. B., NODA, M., TAMKUN, M. M., WAXMAN, S. G., WOOD, J. N. & CATTERALL, W. A. (2000) Nomenclature of voltage-gated sodium channels. Neuron 28, 36–368.

    PubMed  Google Scholar 

  • GRADY, R. M., MERLIE, J. P. & SANES, J. R. (1997) Subtle neuromuscular defects in utrophin-deficient mice. J. Cell Biol. 136, 87–882.

    PubMed  Google Scholar 

  • GRADY, R. M., ZHOU, H., CUNNINGHAM, J. M., HENRY, M. D., CAMPBELL, K. P. & SANES, J. R. (2000) Maturation and maintenance of the neuromuscular synapse: Genetic evidence for roles of the dystrophin--glycoprotein complex. Neuron 25, 27–293.

    PubMed  Google Scholar 

  • HARLOW, M. L., RESS, D., STOSCHEK, A., MARSHALL, R. M. & MCMAHAN, U. J. (2001) The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 47–484.

    PubMed  Google Scholar 

  • HARRIS, C. P., ALDERSON, K., NEBEKER, J., HOLDS, J. B. & ANDERSON, R. L. (1991) Histologic features of human orbicularis oculi treated with botulinum A toxin. Arch. Ophthalmol. 109, 39–395.

    PubMed  Google Scholar 

  • HARTSHORNE, R. P. & CATTERALL, W. A. (1981) Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natl. Acad. Sci. U.S.A. 78, 462–4624.

    PubMed  Google Scholar 

  • HARTZELL, H. C., KUFFLER, S. W. & YOSHIKAMI, D. (1975) Post-synaptic potentiation: Interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J. Physiol.(Lond.) 251, 42–463.

    Google Scholar 

  • HENNIG, R. & LØMO, T. (1985) Firing patterns of motor units in normal rats. Nature 314, 16–166.

    PubMed  Google Scholar 

  • HERRERA, A. A. (1984) Polyneuronal innervation and quantal transmitter release in formamide-treated frog sartorius muscles. J. Physiol. 355, 26–280.

    PubMed  Google Scholar 

  • HEUSER, J. E., REESE, T. S., DENNIS, M. J., JAN, Y., JAN, L. & EVANS, L. (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 27–300.

    PubMed  Google Scholar 

  • HOLDS, J. B., ALDERSON, K., FOGG, S. G. & ANDERSON, R. L. (1990) Motor nerve sprouting in human orbicularis muscle after botulinum A injection. Invest Ophthalmol. Vis. Sci. 31, 96–967.

    PubMed  Google Scholar 

  • HUBBARD, J. I., LLINAS, R. & QUASTEL, D. M. J. (1969). Electrophysiological Analysis of Synaptic Transmission. Edward Arnold (Publishers) Ltd.

  • JACOB, M. & LENTZ, T. L. (1979) Localization of acetylcholine receptors by means of horseradish peroxidasealpha-bungarotoxin during formation and development of the neuromuscular junction in the chick embryo. J. Cell Biol. 82, 19–211.

    PubMed  Google Scholar 

  • JANKOVIC, J. & HALLETT, M. (1994). Therapy with botulinum toxin. New York: Marcel Dekker, Inc.

    Google Scholar 

  • JENKINS, S. M. & BENNETT, V. (2001) Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J. Cell Biol. 155, 73–746.

    PubMed  Google Scholar 

  • JENKINS, S. M. & BENNETT, V. (2002) Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc. Natl. Acad. Sci. U.S.A. 99, 230–2308.

    PubMed  Google Scholar 

  • JERUSALEM, F., ENGEL, A. G. & GOMEZ, M. R. (1974) Duchenne dystrophy. II. Morphometric study of motor end-plate fine structure. Brain 97, 12–130.

    PubMed  Google Scholar 

  • JONES, G., MEIER, T., LICHTSTEINER, M., WITZEMANN, V., SAKMANN, B. & BRENNER, H. R. (1997) Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proc. Natl. Acad. Sci. U.S.A. 94, 265–2659.

    PubMed  Google Scholar 

  • KAMENSKAYA, M. A., ELMQVIST, D. & THESLEFF, S (1975) Guanidine and neuromuscular transmission. II. Effect on transmitter release in response to repetitive nerve stimulation. Arch. Neurol. 32, 51–518.

    PubMed  Google Scholar 

  • KATZ, B. (1996) Neural transmitter release: From quantal secretion to exocytosis and beyond. The Fenn Lecture. J. Neurocytol. 25, 67–686.

    PubMed  Google Scholar 

  • KATZ, B. & MILEDI, R. (1979) Estimates of quantal content during 'chemical potentiation'of transmitter release. Proc. R. Soc. Lond B Biol. Sci. 205, 36–378.

    PubMed  Google Scholar 

  • KELLY, A. M. & ZACKS, S. I. (1969) The fine structure of motor endplate morphogenesis. J. Cell Biol. 42, 15– 169.

    PubMed  Google Scholar 

  • KORDELI, E., LUDOSKY, M. A., DEPRETTE, C., FRAPPIER, T. & CARTAUD, J. (1998) AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber. J. Cell Sci. 111, (Pt 15), 219–2207.

    PubMed  Google Scholar 

  • KRAMARCY, N. R. & SEALOCK, R. (2000) Syntrophin isoforms at the neuromuscular junction: Developmental time course and differential localization. Mol. Cell Neurosci. 15, 26–274.

    PubMed  Google Scholar 

  • KUES, W. A., SAKMANN, B. & WITZEMANN, V. (1995) Differential expression patterns of five acetylcholine receptor subunit genes in rat muscle during development. Eur. J. Neurosci. 7, 137–1385.

    PubMed  Google Scholar 

  • KUMMER, T. T., MISGELD, T., LICHTMAN, J. W. & SANES, J. R. (2002) Formation of a mature, branched postsynaptic apparatus in aneural muscle. 2002 Abstract Viewer/Itinerary Planner.

  • KUNO, M. (1995). The Synapse: Function, Plasticity and Neurotrophism. Oxford: Oxford University Press.

    Google Scholar 

  • LAND, B. R., SALPETER, E. E. & SALPETER, M. M (1981) Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc. Natl. Acad. Sci. U.S.A. 78, 720–7204.

    PubMed  Google Scholar 

  • LIN, W., BURGESS, R. W., DOMINGUEZ, B., PFAFF, S. L., SANES, J. R. & LEE, K. F. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 105–1064.

    PubMed  Google Scholar 

  • LØMO, T. & SLATER, C. R. (1980) Control of junctional acetylcholinesterase by neural and muscular influences in the rat. J. Physiol. 303, 19–202.

    PubMed  Google Scholar 

  • LOVE, F. M. & THOMPSON, W. J. (1999) Glial cells promote muscle reinnervation by responding to activity-dependent postsynaptic signals. J. Neurosci. 19, 1039–10396.

    PubMed  Google Scholar 

  • LUPA, M. T., KRZEMIEN, D. M., SCHALLER, K. L. & CALDWELL, J. H. (1993) Aggregation of sodium channels during development and maturation of the neuromuscular junction. J. Neurosci. 13, 132–1336.

    PubMed  Google Scholar 

  • MAGLEBY, K. L. (1979) Facilitation, augmentation, and potentiation of transmitter release. Prog. Brain Res. 49, 17–182.

    PubMed  Google Scholar 

  • MALHOTRA, J. D., KOOPMANN, M. C., KAZEN-GILLESPIE, K. A., FETTMAN, N., HORTSCH, M. & ISOM, L. L. (2002) Structural requirements for interaction of sodium channel Beta 1 subunits with ankyrin. J. Biol. Chem. 277, 2668–26688

    PubMed  Google Scholar 

  • MARQUES, M. J., CONCHELLO, J. A. & LICHTMAN, J. W. (2000) From plaque to pretzel: Fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J. Neurosci. 20, 366–3675.

    PubMed  Google Scholar 

  • MARTIN, A. R. (1994) Amplification of neuromuscular transmission by postjunctional folds. Proc. R. Soc. Lond B Biol. Sci. 258, 17–187.

    Google Scholar 

  • MATHIESEN, I., RIMER, M., ASHTARI, O., COHEN, I., MCMAHAN, U. J. & LØMO, T. (1999) Regulation of the size and distribution of agrin-induced postsynapticlike apparatus in adult skeletal muscle by electrical muscle activity. Mol. Cell Neurosci. 13, 20–217.

    PubMed  Google Scholar 

  • MATTHEWS-BELLINGER, J. A. & SALPETER, M. M.(1983) Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions. J. Neurosci. 3, 64–657.

    PubMed  Google Scholar 

  • MCMAHAN, U. J. (1990) The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55, 40–418.

    PubMed  Google Scholar 

  • MERLIE, J. P. & SANES, J. R. (1985) Concentration of acetylcholine receptormRNAin synaptic regions of adult muscle fibres. Nature 317, 6–68.

    PubMed  Google Scholar 

  • MOORE, C., LEU, M., MULLER, U. & BRENNER, H. R. (2001) Induction of multiple signaling loops by MuSK during neuromuscular synapse formation. Proc. Natl. Acad. Sci. U.S.A. 98, 1465–14660.

    PubMed  Google Scholar 

  • MSGHINA, M., GOVIND, C. K. & ATWOOD, H. L (1998) Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons. J. Neurosci. 18, 137–1382.

    PubMed  Google Scholar 

  • MURTHY, V. N., SCHIKORSKI, T., STEVENS, C. F. & ZHU, Y. (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 67–682.

    PubMed  Google Scholar 

  • NOAKES, P. G., PHILLIPS, W. D., HANLEY, T. A., SANES, J. R. & MERLIE, J. P. (1993) 43K protein and acetylcholine receptors colocalize during the initia stages of neuromuscular synapse formation in vivo. Dev. Biol. 155, 27–280.

    PubMed  Google Scholar 

  • PANG, K., QUINBY, J., EYRE, J. & SLATER, C. (2002) The neuromuscular junction in cerebral palsy and its response to botulinum toxin-A. Developmental Medicine & Child Neurology 43 (Suppl. 90), 13.

    Google Scholar 

  • PAWSON, P. A., GRINNELL, A. D. & WOLOWSKE, B. (1998) Quantitative freeze-fracture analysis of the frog neuromuscular junction synapse—II. Proximal-distal measurements. J. Neurocytol. 27, 37–391.

    PubMed  Google Scholar 

  • PESTRONK, A. & DRACHMAN, D. B. (1978) Motor nerve sprouting and acetylcholine receptors. Science 199, 122–1225.

    PubMed  Google Scholar 

  • PETERS, M. F., KRAMARCY, N. R., SEALOCK, R. & FROEHNER, S. C. (1994) beta 2-Syntrophin: Localization at the neuromuscular junction in skeletal muscle. Neuroreport 5, 157–1580.

    PubMed  Google Scholar 

  • PHILLIPS, W. D., NOAKES, P. G., ROBERDS, S. L. CAMPBELL, K. P. & MERLIE, J. P. (1993) Clustering and immobilization of acetylcholine receptors by the 43-kD protein: A possible role for dystrophin-related protein. J. Cell Biol. 123, 72–740.

    PubMed  Google Scholar 

  • PIETTE, J., HUCHET, M., HOUZELSTEIN, D. & CHANGEUX, J. P. (1993) Compartmentalized expression of the alpha-and gamma-subunits of the acetylcholine receptor in recently fused myofibers. Dev. Biol. 157, 20–213.

    PubMed  Google Scholar 

  • PLOMP, J. J., VAN KEMPEN, G. T., DE BAETS, M.B., GRAUS, Y. M., KUKS, J. B. & MOLENAAR, P. C. (1995) Acetylcholine release in myasthenia gravis: Regulation at single end-plate level. Ann. Neurol. 37, 62–636.

    PubMed  Google Scholar 

  • PLOMP, J. J., VAN KEMPEN, G. T. & MOLENAAR, P. C. (1994) The upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats: Its dependency on calcium. J. Physiol. 478 (Pt 1), 12–136.

    PubMed  Google Scholar 

  • REGEHR, W. G. & STEVENS, C. F. (2001) Physiology of synaptic transmission and short-term plasticity. In Synapses (edited by Cowen, Sudhof, & Stevens), pp. 13–175. Baltimore and London: The Johns Hopkins University Press.

    Google Scholar 

  • REID, B., SLATER, C. R. & BEWICK, G. S. (1999) Synaptic vesicle dynamics in rat fast and slow motor nerve terminals. J. Neurosci. 19, 251–2521.

    PubMed  Google Scholar 

  • RUFF, R. L. (1996) Effects of length changes on Na+current amplitude and excitability near and far from the endplate. Muscle Nerve 19, 108–1092.

    PubMed  Google Scholar 

  • SAKMANN, B. & BRENNER, H. R. (1978) Change in synaptic channel gating during neuromuscular development. Nature 276, 40–402.

    PubMed  Google Scholar 

  • SALPETER, M. M. (1987) Vertebrate neuromuscular junctions: General morphology, molecular organization, and functional consequences. In The Vertebrate Neuromuscular Junction (edited by Salpeter) pp. –54. New York: Alan R. Liss, Inc

    Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (1999) Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 38–442.

    PubMed  Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 79–805.

    PubMed  Google Scholar 

  • SANTA, T., ENGEL, A. G. & LAMBERT, E. H. (1972) Histometric study of neuromuscular junction ultrastructure. I. Myasthenia gravis. Neurology 22, 7–82.

    PubMed  Google Scholar 

  • SHERRINGTON, C. (1906). The integrative action of the nervous system. New Haven: Yale University Press.

    Google Scholar 

  • SKORPEN, J., LAFOND-BENESTAD, S. & LØMO, T. (1999) Regulation of the size and distribution of ectopic neuromuscular junctions in adult skeletal muscle by nerve-derived trophic factor and electrical muscle activity. Mol. Cell Neurosci. 13, 19–206.

    PubMed  Google Scholar 

  • SLATER, C. R. (1982a) Neural influence on the postnatal changes in acetylcholine receptor distribution at nervemuscle junctions in the mouse. Dev. Biol. 94, 2–30.

    PubMed  Google Scholar 

  • SLATER, C. R. (1982b) Postnatal maturation of nerve-muscle junctions in hindlimb muscles of the mouse. Dev. Biol. 94, 1–22.

    PubMed  Google Scholar 

  • SLATER, C. R., LYONS, P. R., WALLS, T. J., FAWCETT, P. R. & YOUNG, C. (1992) Structure and function of neuromuscular junctions in the vastus lateralis of man. A motor point biopsy study of two groups of patients. Brain 115 (Pt 2), 45–478.

    PubMed  Google Scholar 

  • SLATER, C. R., YOUNG, C., WOOD, S. J., BEWICK, G. S., ANDERSON, L. V., BAXTER, P., FAWCETT, P. R., ROBERTS, M., JACOBSON, L., KUKS, J., VINCENT, A. & NEWSOM-DAVIS, J. (1997) Utrophin abundance is reduced at neuromuscular junctions of patients with both inherited and acquired acetylcholine receptor deficiencies. Brain 120 (Pt 9), 151–1531.

    PubMed  Google Scholar 

  • SMIT, L. M., HAGEMAN, G., VELDMAN, H., MOLENAAR, P. C., OEN, B. S. & JENNEKENS, F. G. (1988) A myasthenic syndrome with congenital paucity of secondary synaptic clefts: CPSC syndrome. Muscle Nerve 11, 33–348.

    PubMed  Google Scholar 

  • SMIT, L. M., VELDMAN, H., JENNEKENS, F. G., MOLENAAR, P. C. & OEN, B. S. (1987) A congenital myasthenic disorder with paucity of secondary synaptic clefts: Deficiency and altered distribution of acetylcholine receptors. Ann. N.Y. Acad. Sci. 505, 34–356.

    PubMed  Google Scholar 

  • SMITH, M. A. & SLATER, C. R. (1983) Spatial distribution of acetylcholine receptors at developing chick neuromuscular junctions. J. Neurocytol. 12, 99–1005.

    PubMed  Google Scholar 

  • SON, Y. J., TRACHTENBERG, J. T. & THOMPSON, W. J. (1996) Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. Trends Neurosci. 19, 28–285.

    PubMed  Google Scholar 

  • SRINIVASAN, Y., ELMER, L., DAVIS, J., BENNETT, V. & ANGELIDES, K. (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333, 17–180.

    PubMed  Google Scholar 

  • STOCKSLEY, M. A. (2000) Neural control of the distribution of voltage-gated sodium channels during development of the rat neuromuscular junction. PhD Thesis University of Newcastle upon Tyne.

  • STOCKSLEY, M. A. & SLATER, C. R. (1999) Voltage gated sodium channels increase in density in junctional, perijunctional and non-junctional regions of developing rat muscle fibres. Brit. Neurosci. Soc. Abst. 15, 75.

    Google Scholar 

  • TAM, S. L., ARCHIBALD, V., JASSAR, B., TYREMAN, N. & GORDON, T. (2001) Increased neuromuscular activity reduces sprouting in partially denervated muscles. J. Neurosci. 21, 65–667.

    PubMed  Google Scholar 

  • TRIMMER, J. S., COOPERMAN, S. S., TOMIKO, S. A., ZHOU, J. Y., CREAN, S. M., BOYLE, M. B., KALLEN, R. G., SHENG, Z. H., BARCHI, R. L. & SIGWORTH, F. J. (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 3–49.

    PubMed  Google Scholar 

  • VINCENT, A. (1999) Immunology of the neuromuscular junction and presynaptic nerve terminal. Curr. Opin. Neurol. 12, 54–551.

    PubMed  Google Scholar 

  • VINCENT, A., BEESON, D. & LANG, B. (2000) Molecular targets for autoimmune and genetic disorders of neuromuscular transmission. Eur. J. Biochem. 267, 671–6728.

    PubMed  Google Scholar 

  • VINCENT, A., CULL-CANDY, S. G., NEWSOM-DAVIS, J., TRAUTMANN, A., MOLENAAR, P. C. & POLAK, R. L. (1981) Congenital myasthenia: End-plate acetylcholine receptors and electrophysiology in five cases. Muscle Nerve 4, 30–318.

    PubMed  Google Scholar 

  • WOOD, S. J., SHEWRY, K., YOUNG, C. & SLATER, C. R. (1998) An early stage in sodium channel clustering at developing rat neuromuscular junctions. Neuroreport 9, 199–1995.

    PubMed  Google Scholar 

  • WOOD, S. J. & SLATER, C. R. (1994) Action potential generation in the isolated rat soleus muscle. J. Physiol. (Lond.) 480, 125P.

    Google Scholar 

  • WOOD, S. J. & SLATER, C. R. (1995) Action potential generation in rat slow-and fast-twitch muscles. J. Physiol. 486 (Pt 2), 40–410.

    PubMed  Google Scholar 

  • WOOD, S. J. & SLATER, C. R. (1997) The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast-and slow-twitch muscles. J. Physiol. 500 (Pt 1), 16–176.

    PubMed  Google Scholar 

  • WOOD, S. J. & SLATER, C. R. (1998) beta-Spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. J. Cell Biol. 140, 67–684.

    PubMed  Google Scholar 

  • WOOD, S. J. & SLATER, C. R. (2001) Safety factor at the neuromuscular junction. Prog. Neurobiol. 64, 39– 429.

    PubMed  Google Scholar 

  • YANG, X., ARBER, S., WILLIAM, C., LI, L., TANABE, Y., JESSELL, T. M., BIRCHMEIER, C. & BURDEN, S. J. (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 39–410.

    PubMed  Google Scholar 

  • YEE, W. C. & PESTRONK, A. (1987) Mechanisms of postsynaptic plasticity: Remodeling of the junctional acetylcholine receptor cluster induced by motor nerve terminal outgrowth. J. Neurosci. 7, 201–2024.

    PubMed  Google Scholar 

  • YOUNG, C., LINDSAY, S., VATER, R. & SLATER, C. R. (1998) An improved method for the simultaneous demonstration of mRNA and esterase activity at the human neuromuscular junction. Histochem. J. 30, –11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slater, C.R. Structural determinants of the reliability of synaptic transmission at the vertebrate neuromuscular junction. J Neurocytol 32, 505–522 (2003). https://doi.org/10.1023/B:NEUR.0000020607.17881.9b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020607.17881.9b

Keywords

Navigation