Skip to main content
Log in

Increased Mitochondrial Permeability in Response to Intrastriatal N-Methyl-d-Aspartate: Detection Based on Accumulation of Radiolabel from [3H]Deoxyglucose

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Induction of the mitochondrial permeability transition has been proposed as an important contributor to cell loss in several neurological disorders, but the evidence that this change can develop in cells in the intact mature brain is largely indirect. In this study, we have tested whether an intrastriatal injection of N-methyl-d-aspartate results in increases in inner membrane permeability that can be detected from mitochondrial accumulation of metabolites of 3H-deoxyglucose previously taken up by brain cells. An increase in incorporation of deoxyglucose metabolites was found in mitochondria prepared from the striatum but not from cerebral cortex distant from the injection site. This change developed more than 8 h after treatment with N-methyl-d-aspartate and is consistent with the induction of the permeability transition as a late change in the progression to irreversible neuronal damage in response to this excitotoxic insult. At earlier times, the restricted permeability of the inner mitochondrial membrane was apparently preserved, at least sufficiently to prevent significant diffusion of metabolites between the cytoplasm and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orth, M. and Schapira, A. H. V. 2001. Mitochondria and degenerative disorders. Am. J. Med. Genet. 106:27–36.

    PubMed  Google Scholar 

  2. Wieloch, T. 2001. Mitochondrial involvement in acute neurodegeneration. IUBMB Life 52:247–254.

    PubMed  Google Scholar 

  3. Sims, N. R. and Anderson, M. F. 2002. Mitochondrial contributions to tissue damage in stroke. Neurochem. Int. 40:511–526.

    PubMed  Google Scholar 

  4. Newmeyer, D. D. and Ferguson-Miller, S. 2003. Mitochondria: Releasing power for life and unleashing the machineries of death. Cell 112:481–490.

    PubMed  Google Scholar 

  5. Friberg, H. and Wieloch, T. 2002. Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84:241–250.

    PubMed  Google Scholar 

  6. Zoratti, M. and Szabo, I. 1995. The mitochondrial permeability transition. Biochim. Biophys. Acta 1366:151–165.

    Google Scholar 

  7. Bernardi, P., Basso, E., Colonna, R., Costantini, P., Dilisa, F., Eriksson, O., Fontaine, E., Forte, M., Ichas, F., Massari, S., Nicolli, A., and Petronilli, V. 1998. Perspectives on the mitochondrial permeability transition. Biochim. Biophys. Acta 1365:200–206.

    Google Scholar 

  8. Nieminen, A. L., Petrie, T. G., Lemasters, J. J., and Selman, W. R. 1996. Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: Evidence of the mitochondrial permeability transition. Neuroscience 75:993–997.

    PubMed  Google Scholar 

  9. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16:5688–5697.

    PubMed  Google Scholar 

  10. White, R. J. and Reynolds, I. J. 1996. Mitochondrial dysfunction in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure. J. Neurosci. 16:5688–5697.

    PubMed  Google Scholar 

  11. Alano, C. C., Beutner G., Dirksen R. T., Gross, R. A., and Sheu, S.-S. 2002. Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation. J. Neurochem. 80:531–538.

    PubMed  Google Scholar 

  12. Yoshimoto, T. and SiesjÖ, B. K. 1999. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 839:283–291.

    PubMed  Google Scholar 

  13. Griffiths, E. J. and Halestrap, A. P. 1995. Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reperfusion. Biochem. J. 307:93–98.

    PubMed  Google Scholar 

  14. Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K.-Y. 1998. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366:79–94.

    PubMed  Google Scholar 

  15. Puka-Sundvall, M., Gilland, E., and Hagberg, H. 2001. Cerebral hypoxia-ischemia in immature rats: Involvement of mitochondrial permeability transition? Dev. Neurosci. 23:192–197.

    PubMed  Google Scholar 

  16. Qin, Z. H., Wang, Y., and Chase, T. N. 1996. Stimulation of N-methyl-D-aspartate receptors induces apoptosis in rat brain. Brain Res. 725:166–176.

    PubMed  Google Scholar 

  17. Zaidan, E., Nilsson, M., and Sims, N. R. 1999. Cyclosporin A-sensitive changes in mitochondrial glutathione are an early response to intrastriatal NMDA or forebrain ischemia in rats. J. Neurochem. 73:2214–2217.

    PubMed  Google Scholar 

  18. Brown, M. R. and Hedge, G. A. 1972. Thyroid secretion in the unanesthetised stress-free rat and its suppression by pentobarbital. Neuroendocrinology 9:158–74.

    PubMed  Google Scholar 

  19. Sims, N. R. 1990. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem. 55:698–707.

    PubMed  Google Scholar 

  20. Robinson, J. B., Brent, L. G., Sumegi, B., and Srere, P. A. 1987. An enzymatic approach to the study of the Krebs tricarboxylic acid cycle. Pages 153–170, in Darley-Usmar, V. M., Rickwood, D., and Wilson, M. T. (eds.), Mitochondria: A practical approach, IRL Press Ltd, Oxford.

    Google Scholar 

  21. Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P., and Wieloch, T. 1998. Cyclosporin A, but not FK-506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J. Neurosci. 18:5151–5159.

    PubMed  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall R. J. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  23. Zaidan, E. and Sims, N. R. 1994. The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J. Neurochem. 63:1812–1819.

    PubMed  Google Scholar 

  24. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916.

    PubMed  Google Scholar 

  25. Bai, G., Rama Rao, K. V., Murthy, C. R. K., Panickar, K. S., Jayakumar, A. R., and Norenberg, M. D. 2001. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66:981–991.

    PubMed  Google Scholar 

  26. Silver, I. A. and Erecinska, M. 1992. Ion homeostasis in rat brain in vivo: Intra and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term transient ischemia. J. Cereb. Blood Flow Metab. 12:759–772.

    PubMed  Google Scholar 

  27. Brustovetsky, N. and Dubinsky, J. M. 2000. Dual responses of CNS mitochondria to elevated calcium. J. Neurosci. 20:103–113.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil R. Sims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidan, E., Nilsson, M. & Sims, N.R. Increased Mitochondrial Permeability in Response to Intrastriatal N-Methyl-d-Aspartate: Detection Based on Accumulation of Radiolabel from [3H]Deoxyglucose. Neurochem Res 29, 609–616 (2004). https://doi.org/10.1023/B:NERE.0000014831.65991.6a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000014831.65991.6a

Navigation