Skip to main content
Log in

Hazard Functions and Expected Spike Density Functions for Neuron Spike Activity in the Cochlear Nucleus of the Cat

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The goal of these experiments was to evaluate the effect of stimulus evoked input and post spike refractoriness on the shapes of post stimulus time histograms (PSTHs). The time courses of spontaneous and/or evoked activity were studied in 153 neurons located predominantly in the dorsal cochlear nucleus in cats anesthetized with Nembutal. Tone bursts were presented to the ipsilateral ear in a free sound field. About half the cells were characterized by the pauser/build-up type of PSTH. Marked refractoriness was evidenced by relatively long recovery times of the hazard functions of spontaneous and tone-evoked spike activity. On presentation of tonal bursts, the time dependence of the probability of the first spike in the absence of a preceding spike (expected spike density function) was greater than the PSTH (actual spike density function). The initial PSTH peak with pause was shaped primarily by stimulus evoked input, whereas refractoriness tended to diminish the build-up portion of the PSTH. In chopper cells, PSTH peaks were usually not reflected in expected spike density functions showing that post spike refractoriness plays a major role in shaping the PSTH. In primary-like cells, refractoriness was small and had little effect on the shape of the PSTH. Some presumptively inhibitory cells showed a tendency to burst discharges with non-monotonic hazard functions. A very small number of cells showed a tendency to internal tuning to a defined signal periodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. Bibikov, “Evaluation of the dynamics of synaptic potentials in evoked neuron spike activity,” Biofizika, 20, 887–892 (1975).

    PubMed  Google Scholar 

  2. N. G. Bibikov, “Evaluation of the parameters and classification of auditory system neurons on the basis of the expected spike density function,” Akust. Zh.,23, 346–355 (1977).

    Google Scholar 

  3. N. G. Bibikov, “Dynamics of the expected spike density of auditory system neurons at different tonal stimulus intensities,” Akust. Zh., 24, 816–825 (1978).

    Google Scholar 

  4. N. G. Bibikov and G. A. Ivanitskii, “Some characteristics of the spontaneous spike activity of peripheral neurons in the frog,” Sensor. Sistemy, 6, 104–108(1992).

    Google Scholar 

  5. N. G. Bibikov, “Transformation of signals by dorsal cochlear nucle-us neurons in mammals,” Sensor. Sistemy, 13, 259–277 (1999).

    Google Scholar 

  6. N. G. Bibikov, O. B. Ovchinnikov, and S. V. Nizamov, “Evaluation of decreases in excitability after spike generation for central auditory neurons in the frog,” Biofizika, 46, 545–556 (2001).

    PubMed  Google Scholar 

  7. E. A. Radionova, The Functional Characteristics of Neurons of the Cochlear Nuclei and Auditory Function[in Russian], Nauka, Moscow (1971).

    Google Scholar 

  8. N. G. Bibikov, “Encoding of the stimulus envelope in peripheral and central regions of the auditory system of the frog,” Acustica, 31, 310–314 (1974).

    Google Scholar 

  9. N. G. Bibikov, “Auditory units in the medulla of lake frog with unusual patterns of spontaneous activity,” J. Comp. Physiolo g y. Ser. A, 173,123–131 (1993).

    Google Scholar 

  10. C. C. Blackburn and M. B. Sachs, “Classification of unit types in the anteroventral cochlear nucleus. PST histograms and regularity anal-ysis,” J. Neurophysiol., 62, 1303–1329 (1989).

    PubMed  Google Scholar 

  11. D. Caspary, “Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat,”Exptl. Neurol., 37, 131–151 (1972).

    Google Scholar 

  12. K. Chen and D. A. Godfrey, “Sodium pentobarbital abolishes burst-ing spontaneous activity of dorsal cochlear nucleus in rat brain slices,” Hear. Res., 149, 216–222 (1999).

    Google Scholar 

  13. J. Ding and H. F. Voigt, “Intracellular response properties of units in the dorsal cochlear nucleus of unanesthetized decerebrate gerbil,” J. Neurophysiol., 77, 2549–2572 (1997).

    PubMed  Google Scholar 

  14. J. Ding, T. E. Benson, and H. F. Voigt, “Acoustic and current-pulse responses of identified neurons in the dorsal cochlear nucleus of unanesthetized, decerebrate gerbils,” J. Neurophysiol., 82, 3434–3457 (1999).

    PubMed  Google Scholar 

  15. E. F. Evans and P. G. Nelson, “The responses of single neurones in the cochlear nucleus of cat as a function of their location and anes-thetic state,” Exptl. Brain Res., 17, 402–427 (1973).

    Google Scholar 

  16. R. P. Gaumond, C. E. Molnar, and D. O. Kim, “Stimulus and recov-ery dependence of cat cochlear nerve fiber spike discharge probability,” J. Neurophysiol., 48, 856–873 (1982).

    PubMed  Google Scholar 

  17. G. T. Gdowski and H. F. Voigt, “Intrinsic oscillations and discharge regularity of units in the dorsal cochlear nucleus (DCN) of the bar-biturate anesthetized gerbil,” Ann. Biomed. Eng., 26, 473–487 (1998).

    PubMed  Google Scholar 

  18. J. A. M. van Gisbergen, J. L. Grashuis, P. I. M. Johannesma, and A. J. J. Vendrik, “Spectral and temporal characteristics of activation and suppression of units in the cochlear nuclei of the anesthetized cat,” Exptl. Brain Res., 23, 367–386 (1975).

    Google Scholar 

  19. D. A. Godfrey, N. Y.-S. Kiang, and B. E. Norris, “Single unit activi-ty in the dorsal cochlear nucleus of the cat,” J. Comp. Neurol., 162, 269–284 (1975).

    PubMed  Google Scholar 

  20. P. R. Gray, “Conditional probability analyses of the spike activity of single neurons,” Biophys. J., 7, 759–777 (1967).

    Google Scholar 

  21. K. E. Hancock and H. F. Voigt, “Intracellularly labeled fusiform cells in dorsal cochlear nucleus of the gerbil. I. Physiological response properties,” J. Neurophysiol., 87, 2505–2519 (2002).

    PubMed  Google Scholar 

  22. K. E. Hancock and H. F. Voigt, “Intracellularly labeled fusiform cells in dorsal cochlear nucleus of the gerbil. II. Comparison of physiology and anatomy,” J. Neurophysiol., 87, 2520–2530 (2002).

    PubMed  Google Scholar 

  23. M. J. Hewitt and R. Meddis, “A computer model of dorsal cochlear nucleus pyramidal cells: intrinsic membrane properties,” J. Acoust. Soc. Amer., 97, 2405–2413 (1995).

    Google Scholar 

  24. J. A. Hirsh and D. Oertel, “Intrinsic properties of neurons in the dor-sal cochlear nucleus of mice in vitro,” J. Physiol. (London), 396, 535–548 (1988).

    PubMed  Google Scholar 

  25. G. S. Hui and J. F. Disterhoft, “Cochlear nucleus responses the pure tones in unanaesthetised rabbit,” Exptl. Neurol., 69, 576–588 (1980).

    Google Scholar 

  26. B. Hutcheon and Y. Yarom, “Resonance, oscillation and the intrinsic frequency preferences of neurons,” Trends Neurol., 23, 216–222 (2000).

    Google Scholar 

  27. T. J. Imig, N. G. Bibikov, P. Poirier, and F. K. Samson, “Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus,” J. Neurophysiol., 83, 907–925 (2000).

    PubMed  Google Scholar 

  28. P. X. Joris, “ Response classes in the dorsal cochlear nucleus and its output tract in the chloralose-anesthetized cat,” J. Neurosci., 18, 3955–3966 (1998).

    PubMed  Google Scholar 

  29. D. O. Kim, J. G. Sirianni, and S. O. Chang, “Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones. Analysis with autocorrelation/ power spectrum,” Hear. Res., 45, 95–113 (1990).

    PubMed  Google Scholar 

  30. L. M. Kitzes, M. M. Gibson, J. E. Rose, and J. E. Hind, “Initial discharge latency and threshold consideration for some neurons in cochlear nuclear complex of the cat,” J. Neurophysiol., 41, 1165–1182 (1978).

    PubMed  Google Scholar 

  31. G. Langner, “Periodicity coding in the auditory system,” Hear. Res., 60, 115–142 (1992).

    Google Scholar 

  32. G. Langner, “Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pith analysis in the time domain,” Exptl. Brain Res., 52, 333–355 (1983).

    Google Scholar 

  33. P. B. Manis, “Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus studied in vitro,” J. Neurosci., 10, 2338–2351 (1990).

    PubMed  Google Scholar 

  34. P. B. Manis, G. A. Spirou, D. D. Wright, S. Paydar, and D. K. Ryugo, “Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus,” J. Comp. Neurol., 348, 262–276 (1994).

    Google Scholar 

  35. C. E. Molmar and R. R. Pfeiffer, “Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus,” Proc. IEEE, 56, 993–1004 (1968).

    Google Scholar 

  36. K. Parham and D. O. Kim, “Analysis of temporal discharge charac-teristics of dorsal cochlear nucleus neurons of unanesthetized decer-ebrate cat,” J. Neurophysiol., 67, 1247–1263 (1992).

    PubMed  Google Scholar 

  37. K. Parham and D. O. Kim, “Spontaneous and sound-evoked dis-charge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cats,” J. Neuro-physiol., 73, 550–561 (1995).

    Google Scholar 

  38. R. R. Pfeiffer, “Classification of response patterns of spike discharges for units in the cochlear nucleus: tone burst stimulation,” Exptl. Brain Res., 1, 220–235 (1966).

    Google Scholar 

  39. W. S. Rhode, P. H. Smith, and D. Oertel, “Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus,” J. Comp. Neurol., 213, 426–447 (1983).

    PubMed  Google Scholar 

  40. W. S. Rhode and R. E. Kettner, “Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat,” J. Neurophysiol., 57, 414–442 (1987).

    PubMed  Google Scholar 

  41. W. S. Rhode and P. H. Smith, “Physiological studies on neurons in the dorsal cochlear nucleus of cat,” J. Neurophysiol., 56, 287–307 (1986).

    PubMed  Google Scholar 

  42. R. Romand, “Survey of intracellular recording in the cochlear nucle-us of the cat,” Brain Res., 148, 43–65 (1978).

    PubMed  Google Scholar 

  43. W. P. Shofner and E. D. Young, “Excitatory/inhibitory response types in the cochlear nucleus. Relationships to discharge patterns and responses to electrical stimulation of the auditory nerve,” J. Neurophysiol., 54, 917–939 (1985).

    PubMed  Google Scholar 

  44. R. Romand, “Survey of intracellular recording in the cochlear nucle-us of the cat,” Brain Res., 148, 43–65 (1978).

    PubMed  Google Scholar 

  45. S. E. Stabler, A. R. Palmer, and J. M. Winter, “Temporal and mean discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig,”J. Neurophysiol., 76, 1667–1688 (1996).

    PubMed  Google Scholar 

  46. H. F. Voigt and E. D. Young, “Evidence of inhibitory interactions between neurons in dorsal cochlear nucleus,” J. Neurophysiol., 44, 76–96 (1980).

    PubMed  Google Scholar 

  47. H. F. Voigt and E. D. Young, “Cross-correlation analysis of inhibitory interactions in the dorsal cochlear nucleus,” J. Neurophysiol., 64, 1590–1610 (1990).

    PubMed  Google Scholar 

  48. E. D. Young and W. E. Brownell, “Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats,” J. Neurophysiol., 39, 282–300 (1976).

    PubMed  Google Scholar 

  49. E. D. Young, J. M. Robert, and W. P. Shofner, “Regularity and latency of units in the ventral cochlear nucleus: implication for units clas-sification and generation of response properties,” J. Neurophysiol., 60,1–29 (1988).

    Google Scholar 

  50. S. Zhang and D. Oertel, “Cartwheel cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices,” J. Neurophysiol., 69, 1384–1397 (1993).

    PubMed  Google Scholar 

  51. S. Zhang and D. Oertel, “Tuberculoventral cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices,” J. Neurophysiol., 69, 1409–1420 (1993).

    PubMed  Google Scholar 

  52. S. Zhang and D. Oertel, “Neuronal circuits associated with the out-put of the dorsal cochlear nucleus through fusiform cells,” J. Neurophysiol., 71, 914–930 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibikov, N., Imig, T. & Samson, F. Hazard Functions and Expected Spike Density Functions for Neuron Spike Activity in the Cochlear Nucleus of the Cat. Neurosci Behav Physiol 35, 59–70 (2005). https://doi.org/10.1023/B:NEAB.0000049652.93984.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000049652.93984.da

Navigation