Skip to main content
Log in

Organization of the Thalamic Projections of the Striopallidum of the Dog Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Experiments based on double luminescent labeling were performed to study the distribution of labeled neurons in the thalamic nuclei depending on the injection sites of luminescent markers into functionally similar or functionally different areas of the striopallidum of 16 dogs. The organizational characteristics of the thalamo-striopallidal projection system in dogs provide evidence for its high level of specificity, as not only the motor and limbic areas of the striopallidum, but also its functionally related areas, receive separate inputs mainly from diverse cellular groups. The centromedian nucleus contained groups of diffusely mixed cells, labeled with different markers and innervating functionally diverse segments of the caudate nucleus. In the centromedian, parafascicular, central medial, and medial dorsal nuclei of the thalamus, projection neurons form analogous cell populations innervating different segments of the striopallidal structures belonging to the same functional system. These striopallidal areas receive projections from small numbers of neurons via axon collaterals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Adrianov and T. A. Mering, An Atlas of the Dog Brain [in Russian], Medgiz, Moscow (1959).

    Google Scholar 

  2. A. I. Gorbachevskaya and O. G. Chivileva, “Analysis of the structural bases of information processing in the basal ganglia: the spatial organization of the thalamostriate projections of the dog brain,” Ros. Fiziol. Zh. im. I. M. Sechenova, 87,No. 6, 865–872 (2001).

    Google Scholar 

  3. A. I. Gorbachevskaya and O. G. Chivileva, “Afferent thalamic projections of pallidal structures in the dog brain,” Morfologiya, 119,No. 3, 30–35 (2001).

    Google Scholar 

  4. O. G. Chivileva and A. I. Gorbachevskaya, “Spatial organization of cortical and subcortical afferent projections of the neostriatum in the dog,” Morfologiya, 113,No. 4, 36–42 (1997).

    Google Scholar 

  5. G. E. Alexander, M. R. DeLong, and P. L. Strick, “Parallel organization of functionally segregated circuit linking basal ganglia and cortex,” Ann. Rev. Neurosci., 9, 357–381 (1986).

    Google Scholar 

  6. O. G. Chivileva and A. I. Gorbachevskaya, “The spatial organization of cortical amygdaloid, tegmental, and nigral projections of the dog's pallidal complex,” in: Abstracts of the 28th Annual Meeting of the Society of Neuroscientists, Los Angeles, California (1998), Vol. 24, Part 1, p. 663.

    Google Scholar 

  7. M. R. DeLong, “Primate models of movement disorders of basal ganglia origin,” Trends Neurosci., 13,No. 7, 281–285 (1990).

    Google Scholar 

  8. M. Deschesnes, J. Bourassa, V. D. Doan, and A. Parent, “Single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat,” Eur. J. Neurosci., 8, 329–343 (1996).

    Google Scholar 

  9. S. Dua-Sharma, K. N. Sharma, and H. L. Jacobs, The Canine Brain in Stereotaxic Coordinates, MIT Press, Cambridge, Massachusetts, London, England (1970).

    Google Scholar 

  10. S. Giorgi, M. Rimoldi, and S. Consolo, “Parafascicular thalamic nucleus deafferentation reduces c-fos expression induced by dopamine D-1 receptor stimulation in rat striatum,” Neurosci., 103,No. 3, 653–661 (2001).

    Google Scholar 

  11. H. J. Groenewegen, Y. Galis de Graaf, and W. J. Smeets, “Integration and segregation of limbic corticostriatal loops at the thalamic level: an experimental tracing study in rats,” J. Chem. Neuroanat., 16,No. 3, 167–185 (1999).

    Google Scholar 

  12. Hong Sen Su and M. Bentivoglio, “Thalamic midline cell populations projecting to the nucleus accumbens, amygdala and hippocampus in the rat,” J. Comp. Neurol., 297,No. 4, 582–593.

  13. D. Joel and I. Weiner, “The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry,” Brain Res. Rev., 23, 62–78 (1997).

    Google Scholar 

  14. D. Joel and I. Weiner, “The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum,” Neurosci., 96,No. 3, 451–474 (2000).

    Google Scholar 

  15. A. E. Kincaid, J. B. Penney, A. B. Young, and S. W. Newman, “The globus pallidus receives a projection from the parafascicular nucleus in the rat,” Brain Res., 553,No. 1, 18–26 (1991).

    Google Scholar 

  16. H. G. J. M. Kuypers, C. E. Catsman-Berrevoets, and R. E. Padt, “Retrograde axonal transport of fluorescent substances in the rat's forebrain,” Neurosci. Lett., 6,No. 3, 127–135 (1977).

    Google Scholar 

  17. D. Pare and Y. Smith, “Thalamic collaterals of corticostriatal axons: their termination field and synaptic targets in cats,” J. Comp. Neurol., 372,No. 4, 551–567 (1996).

    Google Scholar 

  18. A. Parent and L. N. Hazrati, “Anatomical aspects of information processing in primate basal ganglia,” Trends Neurosci., 16,No. 3, 111–116 (1993).

    Google Scholar 

  19. A. Parent, F. Sato, Y. Wu, et al., “Organization of the basal ganglia: the importance of axonal collateralization,” in: Basal Ganglia: Parkinson's Disease and Levodopa Therapy, Trends Neurosci., 23,No. 10, Suppl., 20–27 (2000).

    Google Scholar 

  20. A. F. Sadikot, A. Parent, and C. Francois, “Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections,” J. Comp. Neurol., 315,No. 2, 137–159 (1992).

    Google Scholar 

  21. P. Winn, V. J. Brown, and W. L. Inglis, “On the relationship between the striatum and the pedunculopontine tegmental nucleus,” Crit. Rev. Neurobiol., 11,No. 4, 241–261 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachevskaya, A.I., Chivileva, O.G. Organization of the Thalamic Projections of the Striopallidum of the Dog Brain. Neurosci Behav Physiol 34, 519–524 (2004). https://doi.org/10.1023/B:NEAB.0000022641.44459.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000022641.44459.24

Navigation