Skip to main content
Log in

Intracortical Synchronization of Epileptic Discharges at Different Stages of Ultrastructural Rearrangements in a Completely Neuronally Isolated Area of Rat Neocortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Cross-correlation functions were used to study the time delay (a measure of synchronization) in the appearance of epileptic discharges in distant areas of the cortex in the intact cortex and in neuronally isolated cortical strips in Wistar rats. Experiments were performed at different stages of axon sprouting 30 and 90 days after isolation of cortical areas and in intact cortex. Significant increases in the number of synapses in layer V of isolated cortical strips at 30 days correlated with significant decreases in the time delay, while decreases in the number of synapses at 90 days correlated with a significant increase in the time delay. This is evidence that newly formed synapses increase the extent of synchronization and thus affect epileptogenesis. The data obtained here suggest that large pyramidal cells in layer V of the rat neocortex form a neural network in pathological conditions, this supporting intracortical synchronization of epileptic discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. S. Kositsyn and N. V. Pasikova, “Specific characteristics of structural phasic rearrangements in a region of the cerebral cortex of the brain in conditions of complete and prolonged neuronal isolation,” Dokl. Ros. Akad. Nauk., 376,No. 6, 833–835 (2001).

    Google Scholar 

  2. V. G. Marchenko, “Spatial synchronization of potentials in baseline and evoked EcoG of neuronally isolated strips of cortex in rabbits,” Zh. Vyssh. Nerv. Deyat., 43,No. 6, 1196–1201 (1993).

    Google Scholar 

  3. N. V. Pasikova, V. G. Marchenko, and N. S. Kositsyn, “The structural bases of intracortical processes underlying the synchronization of epileptic potentials in the sensorimotor area of the rat neocortex,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86,No. 5, 532–540 (2000).

    Google Scholar 

  4. N. V. Pasikova, V. G. Marchenko, and N. S. Kositsyn, “Development and application of a method for isolating areas of neocortex in small animals for long-term studies,” Zh. Vyssh. Nerv. Deyat., 49,No. 2, 355–358 (1999).

    Google Scholar 

  5. P. C. Bush, D. A. Prince, and D. M. Kanneth, “Increased pyramidal excitability and NMDA conductance can explain post-traumatic epileptogenesis without disinhibition: model,” J. Neurophysiol., 82,No. 4, 1748–1758 (1999).

    Google Scholar 

  6. Y. Chagnac-Amitai, H. J. Luhmann, and D. A. Prince, “Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features,” J. Comp. Neurol., 296, 598–603 (1990).

    Google Scholar 

  7. R. D. Chervin, P. A. Pierce, and B. W. Connors, “Periodicity and directionality in the propagation of epileptiform discharges across neocortex,” J. Neurophysiol., 60,No. 5, 1695–1713 (1998).

    Google Scholar 

  8. B. W. Connors, “Initiation of synchronized neuronal bursting in neocortex,” Nature, 310,No. 5979, 685–687 (1984).

    Google Scholar 

  9. C. D. Gilbert and T. N. Wiesel, “Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex,” J. Neurosci., 9,No. 7, 2432–2442 (1989).

    Google Scholar 

  10. C. D. Gilbert and T. N. Wiesel, “Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex,” Nature, 280,No. 5718, 120–125 (1979).

    Google Scholar 

  11. D. J. Golomb, “Model of neuronal transient synchrony during propagation of activity through neocortical circuitry,” J. Neurophysiol., 79,No. 1, 1–12 (1998).

    Google Scholar 

  12. M. G. Gutnick, B. W. Connors, and D. A. Prince, “Mechanisms of neocortical epileptogenesis in vitro,” J. Neurophysiol., 42,No. 6, 1321–1335 (1982).

    Google Scholar 

  13. S. N. Hoffman and D. A. Prince, “Epileptogenesis in immature neocortical slices induced by 4-aminopyridine,” Brain Res., 85,No. 1, 64–70 (1995).

    Google Scholar 

  14. J. Holsheimer and F. H. Lopes da Silva, “Propagation velocity of epileptiform activity in the hippocampus,” Exptl. Brain Res., 77,No. 1, 69–78 (1989).

    Google Scholar 

  15. J. Lubke, H. Markram, M. Frotsher, and B. Sakman, “Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class,” J. Neurosci., 15, 16, No. 10, 3209–3218 (1996).

    Google Scholar 

  16. D. Neckelmann, F. Amzica, and M. Steriade, “Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms,” J. Neurophysiol., 80,No. 3, 1480–1494 (1998).

    Google Scholar 

  17. D. Prince and G. Tseng, “Epileptogenesis in chronically injured cortex: in vitro studies,” J. Neurophysiol., 69,No. 4, 1276–1289 (1993).

    Google Scholar 

  18. P. Salin, G. F. Tseng, S. Hofman, et al., “Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex,” J. Neurosci., 15,No. 12, 8234–8245 (1995).

    Google Scholar 

  19. P. A. Schwartzkroin and D. A. Prince, “Cellular and field potential properties of epileptogenic hippocampal slices,” Brain Res., 147,No. 1, 117–130 (1978).

    Google Scholar 

  20. S. Sharpless and L. Halpern, “The electrical excitability of chronically isolated cortex studied by means of permanently implanted electrodes,” EEG Clin. Neurophysiol., 14,No. 1, 244–255 (1962).

    Google Scholar 

  21. D. Y. T'so, C. D. Gilbert, and T. N. Wiesel, “Relationship between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis,” J. Neurosci., 6,No. 6, 1160–1170 (1986).

    Google Scholar 

  22. A. E. Telfeian and B. W. Connors, “Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex,” Epilepsia, 39,No. 7, 700–708 (1998).

    Google Scholar 

  23. R. Traub, J. Jefferys, and M. Whittington, “Enhanced NMDA conductance can account for epileptiform activity induced by low Mn2+ in the rat hippocampal slice,” J. Physiol., 478, 379–393 (1994).

    Google Scholar 

  24. R. Traub, R. Miles, and J. Jefferys, “Synaptic and intrinsic conductance shape picrotoxin induced synchronized after-discharge in guinea-pig hippocampal slice,” J. Physiol., 461, 525–547 (1993).

    Google Scholar 

  25. Y. Tsau, Li Guan, and J.-Y. Wu, “Initiation of spontaneous epileptiform activity in the neocortical slice,” J. Neurophysiol., 80,No. 2, 978–982 (1998).

    Google Scholar 

  26. W. J. Wadman and M. J. Gutnick, “Non-uniform propagation of epileptiform discharge in brain slices of rat neocortex,” Neurosci., 52,No. 2, 255–262 (1993).

    Google Scholar 

  27. B. Y. Wong and D. A. Prince, “The lateral spread of ictal discharges in neocortical brain slices,” Epilepsy Res., 7,No. 1, 29–39 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchenko, V.G., Pasikova, N.V. & Kositsyn, N.S. Intracortical Synchronization of Epileptic Discharges at Different Stages of Ultrastructural Rearrangements in a Completely Neuronally Isolated Area of Rat Neocortex. Neurosci Behav Physiol 34, 307–313 (2004). https://doi.org/10.1023/B:NEAB.0000018737.64204.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000018737.64204.ca

Navigation