Skip to main content
Log in

Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4–β-glucanase (cel1)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Poplar (Populus tremula) plants which had been transformed with Arabidopsis thaliana cel1 cDNA and successfully over-expressed the gene, exhibited significant phenotypic alterations which included taller plants, larger leaves, increased stem diameter, wood volume index, dry weight and a higher percentage of cellulose and hemicellulose, compared to the wild-type plants. Transgenic A. thaliana plants over-expressing A. thaliana cel1 exhibited similar levels of cel1 mRNA in the elongation zone of the flowering stem and higher levels in mature leaves when compared with wild-type plants. CEL1 protein levels in the elongation zone of the flowering stem of transgenic plants were similar or slightly higher compared to that of the wild-type plants, whereas mature leaves of transgenic plants contained a higher level of CEL1. These data indicate that in elongating zone of Arabidopsis, CEL1 level is tightly regulated. In contrast to transgenic poplar over-expressing the A. thaliana cel1, no phenotypic difference was found between A. thaliana transgenic and wild-type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldington S. and Fry S.C. 1993. Oligosaccharins. Adv. Botan. Res. 19: 1–101.

    Google Scholar 

  • Amor Y., Haigler C.H., Johnson S., Wainscott M. and Delmer D.P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92: 9353–9357.

    PubMed  Google Scholar 

  • An G., Ebert P.R., Mitra A. and Ha S.B. 1988. Binary vectors.. In: Gelvin S.B., Shilperoort R.A. and Verma D.P.S. (eds), Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, the Netherlands, A3: pp. 1–19

    Google Scholar 

  • Arioli T., Peng L., Betzner A.S., Burn J., Wittke W., Herth W., Camilleri C., Hofte H., Plazinski J., Birch R., Cork A., Glover J., Redmond J. and Williamson R.E. 1998. Molecular analysis of cellulose synthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Baskin T.I., Berzner A.A., Hoggart R., Cork A. and Williamson R.E. 1992. Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19: 427–437.

    Google Scholar 

  • Bechtold N. and Pelletier G. 1998. In planta Agrobacterium–mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration.. In: Martinez-Zapater J.M. and Salinas J. (eds), Methods in Molecular Biology: Arabidopsis Protocols Vol. 82. Humana Press Inc., Totowa, USA, pp. 259–266.

    Google Scholar 

  • Bradford M.N. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utiliziting the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  Google Scholar 

  • Brown R.M.J., Saxena I.M. and Kudlica K. 1996. Cellulose bio-sythesis in higher plants. Trends Plant Sci. 1: 149–155.

    Google Scholar 

  • Brummell D.A., Catala C., Lashbrook C.C. and Bennett A.B. 1997a. A membrane-anchored E-typ endo-1,4–ß-glucanase is localized on Golgi and plasma membranes of higher plants. Proc. Natl. Acad. Sci. USA 94: 4794–4799.

    PubMed  Google Scholar 

  • Burton R.A., Gibeaut D.M., Bacic A., Findlay K., Roberts K., Hamilton A., Baulcombe D.C. and Fincher G.B. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12: 691–705.

    PubMed  Google Scholar 

  • Carpita N.C. and Gibeaut D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    PubMed  Google Scholar 

  • Cho H.T. and Cosgrove D.J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 15: 9783–9788.

    Google Scholar 

  • Cleland R.E. 1981. Wall extensibility: hormones and wall extension.. In: Tanner W. and Loewus F.A. (eds), Encyclopedia of Plant Physiology, Volume 13B. Springer-Verlag, Berlin, Germany, pp. 255–273.

    Google Scholar 

  • Cockcroft C.E., den Boer B.G.W., Healy J.M.S. and Murray J.A.H. 2000. Cyclin D control of growth rate in plants. Nature 405: 575–579.

    PubMed  Google Scholar 

  • Cosgrove D.J. 1993. How do plant cells extend? Plant Physiol. 102: 1–6.

    PubMed  Google Scholar 

  • Del Campillo E. 1999. Multiple endo-1,4–β-D-glucanase (cellulase) genes in Arabidopsis. Curr. Opin. Dev. Biol. 46: 39–61.

    Google Scholar 

  • Doyle J.J. and Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Fry S.C. 1989. The structure and functions of xyloglucan. J. Ex. Botany 40: 1–11.

    Google Scholar 

  • Fry S.C., Smith R.C., Renwick K.F., Martin D.J., Hodge S.K. and Matthews K.J. 1992. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282: 821–828.

    PubMed  Google Scholar 

  • Harlow E. and Lane D. 1988. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Hatfield R.D. and Nevins D.J. 1987. Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol. 83: 203–207.

    Google Scholar 

  • Hayashi T., Marsden M.P.F. and Delmer D. 1987. Pea xyloglucan and cellulose. V. Xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol. 83: 384–389.

    Google Scholar 

  • Hayashi T., Wong Y.S. and Maclachlan G. 1984. Pea xyloglucan and cellulose. Plant Physiol. 25: 605–610.

    Google Scholar 

  • Inouhe M. and Nevins D.J. 1991. Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol. 96: 426–431.

    Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685.

    PubMed  Google Scholar 

  • Levy I., Shani Z. and Shoseyov O. 2002. Modification of polysaccharides and plant cell wall by endo-1,4–β-glucanase and cellulose-binding domains. Biomol Eng. 19: 17–30.

    PubMed  Google Scholar 

  • McQueen-Mason S.J., Durachko D.M. and Cosgrove D.J. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4: 1425–1433.

    PubMed  Google Scholar 

  • Nicol F., His I., Jauneau A., Vernhattes S., Canut H. and Hofte H. 1998. A plasma membrane-bound putative endo-1,4–β—D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17: 5563–5576.

    PubMed  Google Scholar 

  • Nishitani K. and Tominaga R. 1992. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267: 21058–21064.

    PubMed  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature. 227: 680–685.

    PubMed  Google Scholar 

  • Ohmiya Y., Samejima M., Shiroishi M., Amano Y., Kanda T., Sakai F. and Hayashi T. 2000. Evidence that endo-1,4–β-glucanase act on cellulose in suspension-cultured poplar cells. Plant J. 24: 147–158.

    PubMed  Google Scholar 

  • Park Y.W., Tominaga R., Sugiyama J., Furuta Y., Tanimoto E., Samejima M., Sakai F. and Hayashi T. 2003. Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J. 33: 1099–106.

    PubMed  Google Scholar 

  • Pauly M., Albersheim P., Darvill A. and York W.S. 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20: 629–639.

    PubMed  Google Scholar 

  • Roberts K. 1994. The plant extracellular matrix: in a new expansive mood. Curr. Opin. Cell Biol. 6: 688–694.

    PubMed  Google Scholar 

  • Rose J.K.C. and Bennett A.B. 1999. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion an fruit ripening. Trends Plant Sci. 4: 176–183.

    PubMed  Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Shani Z. 2000. The effect of endo-1,4–β-glucanase and a cellulose binding protein on plant cell elongation. Ph.D. Thesis, The Hebrew University of Jerusalem, Israel.

    Google Scholar 

  • Shani Z., Dekel M., Sig Jensen C., Tzfira, T., Goren R., Altman A. and Shoseyov O. 2000. Arabidopsis thaliana endo-1,4–β-glucanase (cel1) promoter mediates uidA expression in elongating tissues of aspen _Populus tremula_. J. Plant Physiol. 156: 118–120.

    Google Scholar 

  • Shani Z., Dekel M., Tsabary G. and Shoseyov O. 1997. Cloning and characterization of elongation specific endo-1,4–β-ß-glucanase (cel1) from Arabidopsis thaliana. Plant Mol. Biol. 34: 837–842.

    Google Scholar 

  • Shani Z., E. Shpigel E., L. Roiz, R. Goren, B. Vinocur, T. Tzfira, A. Altman. Shoseyov O. 1999. Cellulose binding domain, increases cellulose synthase activity in Acetobacter xylinum, and biomass of transgenic plants.. In: Altman A., Ziv M. and Izhar S. (eds), A Plant Biotechnology and In Vitro Biology in the 21st Century. Kluwer Academic Publishers, pp. 213–218.

  • Shimizu Y., Aotsuka S., Hasegawa O., Kawada T., Sakuno T., Sakai. F., Hayashi T. 1997. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol. 38: 375–378.

    PubMed  Google Scholar 

  • Shpigel E., Roiz L., Goren R. and Shoseyov O. 1998. Bacterial cellulose-binding domain modulates in-vitro elongation of different plant cells. Plant Physiol. 117: 1185–1194.

    PubMed  Google Scholar 

  • Taiz L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Ann. Rev. Plant Physiol. 35: 585–657.

    Google Scholar 

  • Tonouchi N., Tahara N., Tsuchida T., Yoshinaga F., Beppu T. and Horinouchi S. 1995. Addition of a small amount of an endoglucanase enhances cellulose prodaction by Acetobacter xylinum. Biosci. Biotech. Biochem. 59: 805–808.

    Google Scholar 

  • Turner S.R. and Somerville C.R. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: 689–701.

    PubMed  Google Scholar 

  • Tsabary G., Shani Z., Roiz L., Levi I., Riov J. and Shoseyov O. 2002. Abnormal “wrinkled ce”ll walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4–ß-glucanase (cel1) antisense. Plant Mol. Biol. 51: 213–224.

    Google Scholar 

  • Tsai C.J., Popko J.L., Mielke M.R., Hu W.J., Podila G.K. and Chiang V.L. 1998. Suppression of O-Methyltransferase Gene by Homologous Sense Transgene in Quaking Aspen Causes Red-Brown Wood Phenotypes. Plant Physiol. 117: 101–112.

    PubMed  Google Scholar 

  • Tzfira T., Jensen C.S., Zuker A., Vinocur B., Altman A. and Vainstein A. 1997. Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol. Biol. Reporter 15: 219–235.

    Google Scholar 

  • Van Soest P.J., Roberston J.B. and Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597.

    PubMed  Google Scholar 

  • Verma D.P.S., Maclachlan G.A., Byrne H. and Ewings D. 1975. Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J. Biol. Chem. 250: 1019–1026.

    PubMed  Google Scholar 

  • Wong Y.S., Fincher G.B. and Maclachlan G.A. 1977. Cellulases can enhanceβ-glucan synthesis. Science 195: 679–681.

    Google Scholar 

  • Xu W., Purugganan M.M., Poolisensky D.H., Antosiewicz D.M., Fry S.C. and Braam J. 1995. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7: 1555–1567.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shani, Z., Dekel, M., Tsabary, G. et al. Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4–β-glucanase (cel1). Molecular Breeding 14, 321–330 (2004). https://doi.org/10.1023/B:MOLB.0000049213.15952.8a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000049213.15952.8a

Navigation