Skip to main content
Log in

Ethylene insensitive and post-harvest yellowing retardation in mutant ethylene response sensor (boers) gene transformed broccoli (Brassica olercea var. italica)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A mutant broccoli ers (ethylene-response-sensor, boers) gene was obtained through site directed mutagenesis by replacing the isoleucine with phenylanine at the 62th residue. Two plasmids were constructed with this mutant gene regulated by the CaMV 35S promoter together with the nptII (kanamycin resistance gene) coding sequence and hpt (hygromycin resistance gene), respectively, for the pBI-mERSI62F and pSM1H-mERSI62F plasmids. Genetic transformation of the above two constructs via A. tumefaciens has been conducted to evaluate their effects on floret yellowing of harvested broccoli. Over a hundred transformants have been obtained on the selected cotyledon and hypocotyl explants. PCR and Southern analysis demonstrated integration of the transgenes in the transformants. However, through Southern hybridization, we determined that multi-site integration and DNA rearrangements had occurred in most transformants. Morphological and characteristic alternation such as slower plant growth, shorter plant height, easy branching, late bolting, and relative higher mortality in comparison with other transgenes were noted in some transformants. Transgenic lines showing delayed senescence in leaves and floral heads were obtained. The expression of transgene was confirmed by Northern blot analysis. The transformed progenies also showed ethylene insensitivity in seed germination, detached leaves and harvested florets. Nevertheless, in most lines, the yellowing was only delayed 1–2 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berrocal-Lobo M., Molina A. and Solano R. 2002. Constitutive expression of ethylene-response-factor 1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29: 23-32.

    Google Scholar 

  • Bovy A.G., Angenet G.C., Dons H.J.M. and van Altvorst A.C. 1999. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol. Breed. 5: 301-308.

    Google Scholar 

  • Biondi S., Scaramagli S., Capitani F., Marino G., Altamura M.M. and Torrigiani P. 1998. Ethylene involvement in vegetative bud formation in tobacco thin layers. Protoplasma 202: 134-144.

    Google Scholar 

  • Bleecker A.B. and Schaller G.E. 1996. The Mechanism of ethylene perception. Plant Physiology 111: 653-660.

    Google Scholar 

  • Bleecker A.B., Estelle M.A., Somerville C. and Kende H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 241: 1086-1089.

    Google Scholar 

  • Bleecker A.B., Esch J.J., Hall A.E., Rodriguez F.I. and Binder B.M. 1998. The ethylene-receptor family from Arabidopsis: structure and function. Phil. Trans. R. Soc. Lond. B. 353: 1405-1412.

    Google Scholar 

  • Chen H.H., Charng Y.Y., Yang S.F. and Shaw J.F. 1998. Isolation and characterization of broccoli cDNA (Accession No. AF047477) encoding an ERS-type ethylene receptor. Plany Physiol. 117: 1126.

    Google Scholar 

  • Chen L.F.O., Kuo H.Y., Chen M.H., Lai K.N., Chen S.C.G. 1997. Reproducibility of the differential amplification between leaf and root DNAs in soybean revealed by RAPD markers. Theor. Appl. Genet. 95: 1033-1043.

    Google Scholar 

  • Chen L.F.O., Huang C.Y., Charng Y.Y., Sun C.W. and Yang S.F. 2001. Transformation of broccoli (Brassica oleracea var. italica) with isopentenytransferase gene with Agrobacterium tumefaciens for postharvest yellowing retardation. Mol. Breed. 7: 243-257.

    Google Scholar 

  • Clarke S.F., Jameson P.E. and Downs C. 1994. The influence of 6-benzyl-aminopurine on post-harvest senescence of floral tissues of broccoli (Brassica oleracea var italica). Plant Growth Regulation 14: 21-27.

    Google Scholar 

  • Clark D.G., Gubrium E.K., Barrett J.E., Nell T.A. and Klee H.J. 1999. Root formation in ethylene-insensitive plants. Plant Physiol. 121: 53-59.

    Google Scholar 

  • Dolan L. 1997. The role of ethylene in the development of palnt form. J. Exp. Bot. 48: 201-210.

    Google Scholar 

  • Flavell R.B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. USA. 91: 3490-3496.

    Google Scholar 

  • Forney C.F. 1995. Hot-water dips extend the shelf life of fresh broccoli. Hort. Sci. 30: 1054-1057.

    Google Scholar 

  • Forney C.F. and Jordan M.A. 1998. Induction of volatile compounds in broccoli by postharvest hot-water dips. J. Agri. Food Chem. 46: 5295-5301.

    Google Scholar 

  • Gamborg O.L., Miller R.A. and Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50: 151-158.

    Google Scholar 

  • Grbic V. and Bleecker A.B. 1995. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 8(4): 595-602.

    Google Scholar 

  • Gawel N.J. and Jarret R.L. 1991. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9: 262-266.

    Google Scholar 

  • Hall A.E., Findell J.L., Schaller G.E., Sisler E.C. and Bleecker A.B. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 133: 1449-1457.

    Google Scholar 

  • Henzi M.X., McNeil D.L., Christey M.C. and Lill R.E. 1999. A tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli. Aust. J. Plant. Physiol. 26: 179-183.

    Google Scholar 

  • Hoffman T., Schmidt J.S., Zheng X. and Bent A.F. 1999. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene for gene disease resistance. Plant Physiol. 119: 935-949.

    Google Scholar 

  • Hua J., Chang C., Sun Q. and Meyerowitz E.M. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712-1714.

    Google Scholar 

  • Irving D.E. and Joyce D.C. 1995. Sucrose supply can increase longevity of broccoli (Brassica olercea) branchlets kept at 22 °C. Plant Growth Regulation 17: 251-256.

    Google Scholar 

  • Jones M.L. and Woodson W.R. 1997. Pollination-induced ethylene in Carnation. Plant Physiol. 115: 205-212.

    Google Scholar 

  • Kepczynski J. and Kepczynska E. 1997. Ethylene in seed dormancy and germination. Physiol. Planta. 101: 720-726.

    Google Scholar 

  • King G.A. and Morris S.C. 1994. Physiological Changes of Broccoli during Early Postharvest Senescence and through the Pre-harvest-Postharvest Continuum. J. Amer. Soc. Hort. Sci. 119: 270-275.

    Google Scholar 

  • Knoester M., van Loon L.C., van der Heuvel J., Hennig J., Bol J.F. and Linthorst J.M. 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Pro. Natl. Acad. Sci. USA. 95: 1933-1937.

    Google Scholar 

  • Kuhlemeier C., Green P.J. and Chua N.H. 1987. Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. 38: 221-257.

    Google Scholar 

  • Lynch J. and Brown K.M. 1997. Ethylene and plant responses to nutritional stress. Physiol. Planta 100: 613-619.

    Google Scholar 

  • Makhlouf J., Willemot C., Arul J., Castaigne F. and Emond J. 1989a. Regulation of Ethylene Biosynthesis in Broccoli flower Buds in controlled atmospheres. J. Amer. Soc. Hort. Sci. 114(6): 955-958.

    Google Scholar 

  • Makhlouf J., Castaigne F., Arul J., Willemot C. and Gosselin A. 1989b. Long-term Storage of Broccoli under controlled atmosphere. HortScience 24(40): 637-639.

    Google Scholar 

  • Matzke M.A. and Matzke J.M. 1995. How and why do plants inactivate homolohous (Trans)genes? Plant Physiol. 107: 679-685.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473-497.

    Google Scholar 

  • Orzaez D., Blay R. and Granell A. 1999. Programme of senescence in petals and carpels of Pisum sativum L. flowers and its control by ethylene. Planta 208: 220-226.

    Google Scholar 

  • Pua E.C. 1993. Cellular and molecular aspects of ethylene on plant morphogenesis of recalcitrant Brassica species in vitro. Bot. Bull. Acad. Sin. 34: 191-209.

    Google Scholar 

  • Puddephat I.J., Riggs T.J. and Fenning T.M. 1996. Transformation of Brassica oleracea L.: a critical review. Mol. Breed. 2: 185-210.

    Google Scholar 

  • Smalle J. and van der Straeten D. 1997. Ethylene and vegetative development. Physiol. Planta 100: 593-605.

    Google Scholar 

  • Shaw J.F., Chen H.H., Tsai M.F., Kuo C.I. and Huang L.C. 2002. Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica olercea. Mol. Breed. 9: 211-216.

    Google Scholar 

  • Shewfelt R., Heaton E.K. and Batal K.M. 1984. Nondestructive color measurement of fresh broccoli. J. Food Sci. 49: 1612-1613.

    Google Scholar 

  • Tian M.S., Downs C.G., Lill R.E. and King G. A. 1994. A role for ethylene in the yellowing of broccoli after harvest. J. Amer. Soc. Hort. Sci. 119(2): 276-281.

    Google Scholar 

  • Tian M.S., Woolf A.B., Bowen J.H. and Ferguson I.B. 1996. Changes in color and chlorophyll fluorescence of broccoli florets following hot water treatment. J. Amer. Soc. Hort. Sci. 121: 310-313.

    Google Scholar 

  • Vaucheret H., Beclin C., Elmayan T., Feuerbach F., Godon C., Morel J.B. Mourrain P., Palauqui J.C. and Vernhettes S. 1998. Transgene-induced gene silencing in plants. Plant J. 16: 651-659.

    Google Scholar 

  • Wadsworth G.J., Redinbaugh M.G. and Scandalios J.G. 1988. A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal. Biochem. 172: 279-283.

    Google Scholar 

  • Wang C.Y. 1977. Effect of aminoethoxy analog of rhizobitoxine and sodium benzoate on senescence of broccoli. HortScience 12(1): 54-56.

    Google Scholar 

  • Wilkinson J.Q., Lanahan M.B., Clark D.G., Bleecker A.B., Chang C., Meyerowitz E.M. and Klee H.J. 1997. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotech. 15: 444-447.

    Google Scholar 

  • Yang S.F. and Dong J.G. 1993. Recent progress in research of ethylene biosynthesis. Bot. Bull. Acad. Sin. 34: 89-101.

    Google Scholar 

  • Yang S.F. and Hoffman N.E. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189.

    Google Scholar 

  • Zegzouti H., Jone B., Frasse P., Marty C., Maitre B., Latche A., Pech J.C. and Bouzayen M. 1999. Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J. 18(6): 589-600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LF.O., Huang, JY., Wang, YH. et al. Ethylene insensitive and post-harvest yellowing retardation in mutant ethylene response sensor (boers) gene transformed broccoli (Brassica olercea var. italica). Molecular Breeding 14, 199–213 (2004). https://doi.org/10.1023/B:MOLB.0000047740.99884.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000047740.99884.97

Navigation