Skip to main content
Log in

Decoration of dihydropyrimidine and dihydropyridine scaffolds with sugars via Biginelli and Hantzsch multicomponent reactions: An efficient entry to a collection of artificial nucleosides

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Here we present an overview of our work on the glycosylation of biologically relevant heterocycles.An array of stereochemically pure C-glycosylated dihydropyrimidine and dihydropyridine derivatives (artificial nucleosides) has been prepared. Our strategy involved the synthesis of suitably designed C-glycosylated reagents and their use as components in Biginelli and Hantzsch cyclocondensations. Molecular diversity has been explored within the collection on the basis of the nature and the number of sugar residues as well as their positions in the heterocyclic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebl, M., Parallel personal comments on 'classical' papers in combinatorial chemistry, J. Comb. Chem., 1 (1999) 3-24.

    Article  CAS  Google Scholar 

  2. Fox, S., Farr-Jones, S. and Yund, M. A., High throughput screening for drug discovery: Continually transitioning into new technology, J. Biomol. Screening, 4 (1999) 183-186.

    Article  CAS  Google Scholar 

  3. Wess, G., How to escape the bottleneck of medicinal chemistry, Drug Discov. Today, 7 (2002) 533-535.

    Article  Google Scholar 

  4. Dean, P. M., Zanders, E. D. and Bailey, D. S., Industrialscale, genomics-based drug design and discovery, Trends Biotechnol., 19 (2001) 856-864.

    Article  Google Scholar 

  5. Leach, A. R. and Hann, M. M., The in silico world of virtual libraries, Drug Discov. Today, 5 (2000) 326-336.

    Article  CAS  Google Scholar 

  6. Golebiowski, A., Klopfenstein, S. R. and Portlock, D. E., Lead compounds discovered from libraries, Curr. Opin. Chem. Biol., 5 (2001) 273-284.

    Article  CAS  Google Scholar 

  7. Waller, C. L., Recent advances in molecular diversity, Mol. Div., 5 (2000) 174-174.

    Google Scholar 

  8. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug. Delivery Rev., 46 (2001) 3-26.

    Article  CAS  Google Scholar 

  9. Walters, W. P., Murcko, A. and Murcko, M. A., Recognizing molecules with drug-like properties, Curr. Opin. Chem. Biol., 3 (1999) 384-387.

    Article  CAS  Google Scholar 

  10. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug. Delivery Rev., 23 (1997) 3-25.

    Article  CAS  Google Scholar 

  11. Hann, M. M., Leach, A. R. and Harper, G., Molecular complexity and its impact on the probability of finding leads for drug discovery, Chem. Inf. Com., Sci., 41 (2001) 856-864.

    Article  CAS  Google Scholar 

  12. Martin, E. J. and Critchlow, R. E., Beyond mere diversity: Tailoring combinatorial libraries for drug discovery, J.Comb. Chem., 1 (1999) 32-45.

    Article  CAS  Google Scholar 

  13. Wess, G., Urmann, M. and Sickenberger, B., Medicinal chemistry: Challenges and opportunities, Angew. Chem. Int. Ed., 40 (2001) 3341-3350.

  14. Li, A. P., Screening for human ADME/Tox drug properties in drug discovery, Drug Discov. Today, 6 (2001) 357-366.

    Article  CAS  Google Scholar 

  15. Eddershaw, P. J., Beresford, A. P. and Bayliss, M. K., ADME/PK as part of a rational approach to drug discovery, Drug Discov. Today, 5 (2000) 409-414.

    Article  CAS  Google Scholar 

  16. Breinbauer, R., Vetter, I. R. and Waldmann, H., From protein domains to drug candidates-Natural products as guiding principles in the design and synthesis of compound libraries, Angew. Chem. Int. Ed., 41 (2002) 2878-2890.

  17. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. and Marth, J., Essential of Glycobiology, (eds.) Cold Spring Harbor Laboratory Press, New York, 1999.

    Google Scholar 

  18. Varki, A., Biological roles of oligosaccharides: all of the theories are correct, Glycobiology, 3 (1993) 97-130.

    CAS  Google Scholar 

  19. Barkley, A. and Arya, P., Combinatorial chemistry toward understanding the function(s) of carbohydrates and carbohydrate conjugates, Chem. Eur. J., 7 (2001) 555-563.

    Article  CAS  Google Scholar 

  20. St Hilaire, P. M. and Meldal, M., Glycopeptide and oligosaccharide libraries, Angew. Chem. Int. Ed., 39 (2000) 1162-1179.

    Article  Google Scholar 

  21. Wong, C.-H., Mimics of complex carbohydrates recognized by receptors, Acc. Chem. Res., 32 (1999) 376-385.

    Article  CAS  Google Scholar 

  22. Sears, P. and Wong, C. H., Carbohydrate mimetics: A new strategy for tackling the problem of carbohydrate-mediated biological recognition, Angew. Chem. Int. Ed., 38 (1999) 2301-2324.

    Article  CAS  Google Scholar 

  23. Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S. and Chang, R. S., Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists, J. Med. Chem., 31 (1988) 2235-2246.

    Article  CAS  Google Scholar 

  24. Dolle, R. E., Comprehensive survey of combinatorial library synthesis: 2001, J. Comb. Chem., 4 (2002) 369-418.

    Article  CAS  Google Scholar 

  25. Dolle, R. E., Comprehensive survey of combinatorial library synthesis: 2000, J. Comb. Chem., 3 (2001) 477-517.

    Article  CAS  Google Scholar 

  26. Lin, P. S., Lee, C. L. and Sim, M. M., Synthesis of novel guanidinoglycoside: 2-glycosylamino 4,5-dihydro-6-pyrimidinone, J. Org. Chem., 66 (2001) 8243-8247.

    Article  CAS  Google Scholar 

  27. Dondoni, A., Massi, A., Minghini, E. and Bertolasi, V., Dihydropyridine C-glycoconjugates by Hantzsch cyclocondensation. Synthesis of a C(6)-glycosylated nifedipine analogue, Helv. Chim. Acta, 85 (2002) 3331-3348.

    Article  CAS  Google Scholar 

  28. Dondoni, A., Massi, A., Sabbatini, S. and Bertolasi, V., Three-component Biginelli cyclocondensation reaction using C-glycosylated substrates. Preparation of a collection of dihydropyrimidinone glycoconjugates and the synthesis of Cglycosylated monastrol analogues, J. Org. Chem., 67 (2002) 6979-6994.

    Article  CAS  Google Scholar 

  29. Dondoni, A., Massi, A. and Minghini, E., Twoand three-component Hantzsch reaction using C-glycosylated reagents. Approach to the asymmetric synthesis of 1,4-diyhydropyridines, Synlett, 1 (2002) 89-92.

    Article  Google Scholar 

  30. Dondoni, A., Massi, A. and Sabbatini, S., Towards the synthesis of C-glycosylated dihydropyrimidine libraries via the three-component Biginelli reaction. A novel approach to artificial nucleosides, Tetrahedron Lett., 42 (2001) 4495-4497.

    Article  CAS  Google Scholar 

  31. Bienayme, H., Hulme, C., Oddon, G. and Schmitt, P., Maximizing synthetic efficiency: Multi-component transformations lead the way, Chem. Eur. J., 6 (2000) 3321-3329.

    Article  CAS  Google Scholar 

  32. Ugi, I., Domling, A. and Werner, B., Since 1995 the new chemistry of multicomponent reactions and their libraries, including their heterocyclic chemistry, J. Heterocyclic Chem., 37 (2000) 647-658.

    Article  CAS  Google Scholar 

  33. Lavilla, R., Recent developments in the chemistry of dihydropyridines, J. Chem. Soc., Perkin Trans. 1, 9 (2002) 1141-1156.

    Article  CAS  Google Scholar 

  34. Stout, D. M. and Meyers, A. I., Recent advances in the chemistry of dihydropyridines, 82 (1982) 223-243.

    CAS  Google Scholar 

  35. For reviews see: (a) Kappe, C. O., Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res., 33 (2000) 879-888.

  36. Kappe, C. O., 100 Years of the Biginelli dihydropyrimidine synthesis, Tetrahedron, 49 (1993) 6937-6963.

    Article  CAS  Google Scholar 

  37. Bossert, F. and Vater, W., US Pat. 3, 485, 1969.

  38. Bossert, F. and Vater, W., Dihydropyridines, a new group of strongly effective coronary therapeutic agents, Naturwissenschaften, 58 (1971) 578.

    Article  CAS  Google Scholar 

  39. For a survey on this topic with leading references, see: Kappe, C. O., Biologically active dihydropyrimidinones of the Biginelli-type: a literature survey, Eur. J. Med. Chem., 35 (2000) 1043-1052.

    Article  CAS  Google Scholar 

  40. Klusa, V., Semenova, T. D., Medvinskaya, N. I. and Fast, A. E., Cerebrocrast (IOS-1212) normalizes disturbances of learning, attention, emotional behavior and brain biogenic amine levels in prenatally hypoxized rats, Latvijas Zinatnu Akademijas Vestis, 11/12 (1995) 156-161.

    Google Scholar 

  41. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. and Mitchison, T. J., Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen, Science 286 (1999) 971-974.

    Article  CAS  Google Scholar 

  42. Goldmann, S. and Stoltefuss, J., 1,4-dihydropyridines-effects of chirality and conformation on the calcium-antagonist and calcium agonist activities, Angew. Chem. Int. Ed., 30 (1991) 1559-1578.

    Article  Google Scholar 

  43. Dondoni, A., Formylation of carbohydrates and the evolution of synthetic routes to artificial oligosaccharides and glycoconjugates, Pure App. Chem., 72 (2000) 1577-1588.

    CAS  Google Scholar 

  44. Dondoni, A. and Schernnann, M. C., Thiazole-based synthesis of formyl C-glycosides, J. Org. Chem., 59 (1994) 6404-6412.

    Article  CAS  Google Scholar 

  45. Postema, M. H. D., C-Glycoside Synthesis, CRC Press, Boca Raton, 1995, pp. 303-342.

    Google Scholar 

  46. Chu, C. K. and Baker, D. C., Nucleosides and Nucleotides as Antitumor and Antiviral Agents, (eds.) Plenum Press, New York, 1993.

    Google Scholar 

  47. Hu, E. H., Sidler, D. R. and Dolling, U. H., Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones, J. Org. Chem., 63 (1998) 3454-3457.

    Article  CAS  Google Scholar 

  48. Ma, Y., Qian, C. T., Wang, L. M. and Yang, M., Lanthanide triflate catalyzed Biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions, J. Org. Chem., 65 (2000) 3864-3868.

    Article  CAS  Google Scholar 

  49. Uray, G., Verdino, P., Belaj, F., Kappe, C. O. and Fabian, W. M. F., Absolute configuration in 4-alkyl-and 4-aryl-3,4-dihydro-2(1H)-pyrimidones: A combined theoretical and experimental investigation, J. Org. Chem., 66 (2001) 6685-6694.

    Article  CAS  Google Scholar 

  50. Kappe, C. O., Shishkin, O. V., Uray, G. and Verdino, P., Synthesis and reactions of Biginelli compounds, part 19-X-ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol, Tetrahedron, 56 (2000) 1859-1862.

    Article  CAS  Google Scholar 

  51. Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S. K., Tidwell, R. R., Kumar, A., Boykin, D. W. and Perfect, J. R., In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles, Antimicrob. Agents Chemother., 42 (1998) 2503-2510.

    CAS  Google Scholar 

  52. Sasho, S., Obase, H., Ichikawa, S., Kitazawa, T., Nonaka, H., Yoshizaki, R., Ishii, A. and Shuto, K., Synthesis of 2-imidazolidinylidenepropanedinitrile derivatives as stimulators of gastrointestinal motility 1, J. Med. Chem., 36 (1993) 572-579.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Dondoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dondoni, A., Massi, A. Decoration of dihydropyrimidine and dihydropyridine scaffolds with sugars via Biginelli and Hantzsch multicomponent reactions: An efficient entry to a collection of artificial nucleosides. Mol Divers 6, 261–270 (2003). https://doi.org/10.1023/B:MODI.0000006806.91483.a3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006806.91483.a3

Navigation