Skip to main content
Log in

Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies

  • Published:
Methods in Cell Science

Abstract

Zebrafish provide a rapid and effective means for assessing gene function in the vertebrate nervous system. By employing gain- and loss-of-function techniques it is possible to obtain insights into the roles of both wild-type and heterologously expressed genes. Such approaches enable rapid progression from gene discovery to gene expression and finally to gene function even when examining development of a tissue as complex as the nervous system. Exploiting the full potential of zebrafish as a bioassay for the nervous system will require, not only an understanding of the molecular and cellular basis of normal zebrafish development, but also an appreciation of comparative processes in other species. When applied to mutant animals, classic morphological approaches and contemporary molecular genetic techniques are providing a wealth of information on the development of the nervous system at the molecular, cell, system and behavioural levels. Zebrafish are now emerging as an important tool, supporting mouse genetical approaches for understanding neural function in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams MD, Kerlavage AR, Fields C, Venter JC (1993). 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat Genet 4: 256–267.

    Google Scholar 

  2. Mody M, Cao Y, Cui Z, Tay KY, Shyong A, Shimizu E, Pham K, Schultz P, Welsh D, Tsien JZ (2001). Genome-wide gene expression profiles of the developing mouse hippocampus. Proc Natl Acad Sci USA 98: 8862–8867.

    Google Scholar 

  3. Udvadia AJ, Linney E (2003). Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 256: 1–17.

    Google Scholar 

  4. Hjorth J, Key B (2002). Development of axon pathways in the zebrafish central nervous system. Int J Dev Biol 46: 609–619.

    Google Scholar 

  5. de la Cruz JM, Bamford RN, Burdine RD, Roessler E, Barkovich AJ, Donnai D, Schier AF, Muenke M (2002). A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects. Hum Genet 110: 422–428.

    Google Scholar 

  6. Dodd A, Curtis PM, Williams LC, Love DR (2000). Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9: 2443–2449.

    Google Scholar 

  7. Metscher BD, Ahlberg PE (1999). Zebrafish in context: uses of a laboratory model in comparative studies. Dev Biol 210: 1–14.

    Google Scholar 

  8. Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001). Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356: 1661–1679.

    Google Scholar 

  9. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003). Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13: 382–390.

    Google Scholar 

  10. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10: 1890–1902.

    Google Scholar 

  11. Robinson-Rechavi M, Marchand O, Escriva H, Bardet PL, Zelus D, Hughes S, Laudet V (2001). Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11: 781–788.

    Google Scholar 

  12. McClintock JM, Kheirbek MA, Prince VE (2002). Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129: 2339–2354.

    Google Scholar 

  13. Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA (1995). Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 5: 944–955.

    Google Scholar 

  14. Hjorth JT, Connor RM, Key B (2002). Role of hlx1 in zebrafish brain morphogenesis. Int J Dev Biol 46: 583–596.

    Google Scholar 

  15. Ando H, Furuta T, Tsien RY, Okamoto H (2001). Photo-mediated gene activation using caged RNA/ DNA in zebrafish embryos. Nat Genet 28: 317–325.

    Google Scholar 

  16. Hsiao CD, Hsieh FJ, Tsai HJ (2001). Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish. Dev Dyn 220: 323–336.

    Google Scholar 

  17. Kane DA, Kimmel CB (1993). The zebrafish mid-blastula transition. Development 119: 447–456.

    Google Scholar 

  18. Pauls S, Geldmacher-Voss B, Campos-Ortega JA (2001). A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev Genes Evol 211: 603–610.

    Google Scholar 

  19. Gray M, Moens CB, Amacher SL, Eisen JS, Beattie CE (2001). Zebrafish deadly seven functions in neurogenesis. Dev Biol 237: 306–323.

    Google Scholar 

  20. Cooper KL, Leisenring WM, Moens CB (2003). Autonomous and nonautonomous functions for Hox/Pbx in branchiomotor neuron development. Dev Biol 253: 200–213.

    Google Scholar 

  21. Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV (1998). Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395: 185–189.

    Google Scholar 

  22. Connor RM, Key B (2002). Expression and role of Roundabout-1 in embryonic Xenopus forebrain. Dev Dyn 225: 22–34.

    Google Scholar 

  23. Wang X, Wan H, Korzh V, Gong Z (2000). Use of an IRES bicistronic construct to trace expression of exogenously introduced mRNA in zebrafish embryos. Biotechniques 29: 814–816, 818, 820.

    Google Scholar 

  24. Adam A, Bartfai R, Lele Z, Krone PH, Orban L (2000). Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res 256: 282–290.

    Google Scholar 

  25. Scheer N, Camnos-Ortega JA (1999). Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80: 153–158.

    Google Scholar 

  26. Scheer N, Riedl I, Warren JT, Kuwada JY, Campos-Ortega JA (2002). A quantitative analysis of the kinetics of Gal4 activator and effector gene expression in the zebrafish. Mech Dev 112: 9–14.

    Google Scholar 

  27. Muller F, Williams DW, Kobolak J, Gauvry L, Goldspink G, Orban L, Maclean N (1997). Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos. Mol Reprod Dev 47: 404–412.

    Google Scholar 

  28. Muller F, Chang B, Albert S, Fischer N, Tora L, Strahle U (1999). Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. Development 126: 2103–2116.

    Google Scholar 

  29. Muller F, Blader P, Strahle U (2002). Search for enhancers: teleost models in comparative genomic and transgenic analysis of cis regulatory elements. Bioessays 24: 564–572.

    Google Scholar 

  30. Ghanem N, Jarinova O, Amores A, Long Q, Hatch G, Park BK, Rubenstein JL, Ekker M (2003). Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res 13: 533–543.

    Google Scholar 

  31. Zerucha T, Stuhmer T, Hatch G, Park BK, Long Q, Yu G, Gambarotta A, Schultz JR, Rubenstein JL, Ekker M (2000). A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci 20: 709–721.

    Google Scholar 

  32. Nasevicius A, Ekker SC (2000). Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26: 216–220.

    Google Scholar 

  33. Anderson RB, Cooper HM, Jackson SC, Seaman C, Key B (2000). DCC plays a role in navigation of forebrain axons across the ventral midbrain commissure in embryonic xenopus. Dev Biol 217: 244–253.

    Google Scholar 

  34. Lekven AC, Buckles GR, Kostakis N, Moon RT (2003). Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol 254: 172–187.

    Google Scholar 

  35. Burgess S, Reim G, Chen W, Hopkins N, Brand M (2002). The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pregastrula morphogenesis. Development 129: 905–916.

    Google Scholar 

  36. Kwak SJ, Phillips BT, Heck R, Riley BB (2002). An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mispatterning of the otic vesicle. Development 129: 5279–5287.

    Google Scholar 

  37. Cooper MS, D'Amico LA, Henry CA (1999). Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol 59: 179–204.

    Google Scholar 

  38. Higashijima S, Hotta Y, Okamoto H (2000). Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20: 206–218.

    Google Scholar 

  39. Koster RW, Fraser SE (2001). Tracing transgene expression in living zebrafish embryos. Dev Biol 233: 329–346.

    Google Scholar 

  40. Koster RW, Fraser SE (2001). Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr Biol 11: 1858–1863.

    Google Scholar 

  41. Sapede D, Gompel N, Dambly-Chaudiere C, Ghysen A (2002). Cell migration in the postembryonic development of the fish lateral line. Development 129: 605–615.

    Google Scholar 

  42. Chien CB, Piotrowski T (2002). How the lateral line gets its glia. Trends Neurosci 25: 544–546.

    Google Scholar 

  43. Gilmour DT, Maischein HM, Nusslein-Volhard C (2002). Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34: 577–588.

    Google Scholar 

  44. Weber SA, Ross LS (2003). Gap junctional coupling in the olfactory organ of zebrafish embryos. Brain Res Dev Brain Res 143: 25–31.

    Google Scholar 

  45. Fuss SH, Korsching SI (2001). Odorant feature detection: activity mapping of structure response relationships in the zebrafish olfactory bulb. J Neurosci 21: 8396–8407.

    Google Scholar 

  46. Dynes JL, Ngai J (1998). Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20: 1081–1091.

    Google Scholar 

  47. Gahtan E, Sankrithi N, Campos JB, O'Malley DM (2002). Evidence for a widespread brain stem escape network in larval zebrafish. J Neurophysiol 87: 608–614.

    Google Scholar 

  48. Liu KS, Fetcho JR (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23: 325–335.

    Google Scholar 

  49. Wixon J (2000). Featured organism: Danio rerio, the zebrafish. Yeast 17: 225–231.

    Google Scholar 

  50. Neuhauss SC (2003). Behavioral genetic approaches to visual system development and function in zebrafish. J Neurobiol 54: 148–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Key, B., Devine, C.A. Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25, 1–6 (2003). https://doi.org/10.1023/B:MICS.0000006849.98007.03

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICS.0000006849.98007.03

Navigation