Skip to main content
Log in

Analysis of the Anaerobic Microbial Community Capable of Degrading p-Toluene Sulfonate

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Three strains of Clostridium sp., 14 (VKM B-2201), 42 (VKM B-2202), and 21 (VKM B-2279), two methanogens, Methanobacterium formicicum MH (VKM B-2198) and Methanosarcina mazei MM (VKM B-2199), and one sulfate-reducing bacterium, Desulfovibrio sp. SR1 (VKM B-2200), were isolated in pure cultures from an anaerobic microbial community capable of degrading p-toluene sulfonate. Strain 14 was able to degrade p-toluene sulfonate in the presence of yeast extract and bactotryptone and, like strain 42, to utilize p-toluene sulfonate as the sole sulfur source with the production of toluene. p-Toluene sulfonate stimulated the growth of Ms. mazei MM on acetate. The sulfate-reducing strain Desulfovibrio sp. SR1 utilized p-toluene sulfonate as an electron acceptor. The putative scheme of p-toluene sulfonate degradation by the anaerobic microbial community is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Harwood, C.S., Burchhardt, G., Herrmann, H., and Fuchs, G., Anaerobic Metabolism of Aromatic Compounds via the Benzoyl-CoA Pathway, FEMS Microbiol. Rev., 1999, vol. 22, pp. 439-458.

    Google Scholar 

  2. Lettinga, G., van Velsen, A.M.F., Hobma, W., de Zeeuw, W.J., and Klapwijk, A., Use of the Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment, Biotechnol. Bioeng., 1980, vol. 22, pp. 699-734.

    Google Scholar 

  3. Balch, W.E., Fox, G.E., Magrum, L.J., and Wolfe, R.S., Methanogens: Reevalution of a Unique Biological Group, Microbiol. Rev., 1979, vol. 43,no. 2, pp. 260-296.

    Google Scholar 

  4. Slobodkin, A.I., Reysenbach, A.-L., Strutz, N., Dreier, M., and Wiegel, J., Thermoterrabacterium ferrireducens gen. nov., sp. nov., a Thermophilic Anaerobic Dissimilatory Fe(III)-reducing Bacterium from a Continental Hot Spring, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 541-547.

    Google Scholar 

  5. Hungate, R.E., A Roll Tube Method for Cultivation of Strict Anaerobes, Meth. Microbiol., 1969, pp. 117-132.

  6. Widdel, W.-M. and Pfennig, N., Studies on Dissimilatory Sulfate-reducing Bacteria That Decompose Fatty Acids: Incomplete Oxidation of Propionate by Desulfobulbus propionicus gen. nov., sp. nov., Arch. Microbiol., 1982, vol. 131, pp. 360-365.

    Google Scholar 

  7. Manual of Methods for General Bacteriology, Gerhardt, P. et al., Eds., Washington: Am. Soc. Microbiol., 1981. Translated under the title Metody obshchei bakteriologii, Moscow: Mir, 1983, vol. 1, pp. 67–70.

    Google Scholar 

  8. Powell, G.E., Interpretation of Gas Kinetics of Batch Cultures, Biotechnol. Lett., 1983, vol. 5,no. 7, pp. 437-440.

    Google Scholar 

  9. Boone, D.R. and Whitman, W.B., Proposal of Minimal Standards for Describing New Taxa of Methanogenic Bacteria, Int. J. Syst. Bacteriol., 1988, vol. 38, pp. 212-219.

    Google Scholar 

  10. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vodoemov: Laboratornoe rukovodstvo (The Microbial Ecology of Bodies of Fresh Water: Laboratory Manual), Leningrad: Nauka, 1974.

    Google Scholar 

  11. Postgate, J.R., A Diagnostic Reaction of Desulfovibrio desulfuricans, Nature (London), 1959, vol. 183, pp. 481-482.

    Google Scholar 

  12. Cline, J.D., Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters, Limnol. Oceanogr., 1969, vol. 14, pp. 444-458.

    Google Scholar 

  13. Marmur, J., A Procedure for the Isolation of DNA from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208-218.

    Google Scholar 

  14. DeLey, J., Catloir, H., and Reynarts, A., The Quantitative Measurement of DNA Hybridization from Renaturation Rates, Eur. J. Biochem., 1970, vol. 12, pp.133-142.

    Google Scholar 

  15. Bezrukova, L.V., Obraztsova, A.Ya., and Zhilina, T.N., The Immunological Study of Methanogenic Bacteria, Mikrobiologiya, 1989, vol. 57,no. 1, pp. 92-98.

    Google Scholar 

  16. Shtarkman, N.B., Obraztsova, A.Ya., Laurinavichyus, K.S., Galushko, A.S., and Akimenko, V.K., The Initiation of the Degradation of (Met)-Acrylic Acids by the Specific Anaerobic Methanogenic Microflora of Granulated Activated Sludge, Mikrobiologiya, 1995, vol. 64,no. 2, pp. 270-274.

    Google Scholar 

  17. Shcherbakova, V.A., Laurinavichyus, K.S., Lysenko, A.M., Suzina, N.E., and Akimenko, V.K., Methanogenic Sarcina from an Anaerobic Microbial Community Degrading p-Toluene Sulfonate, Mikrobiologiya, 2003, no. 4, pp. 547-553.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakova, V.A., Chuvil'skaya, N.A., Golovchenko, N.P. et al. Analysis of the Anaerobic Microbial Community Capable of Degrading p-Toluene Sulfonate. Microbiology 72, 666–671 (2003). https://doi.org/10.1023/B:MICI.0000008366.12727.58

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICI.0000008366.12727.58

Navigation