Skip to main content
Log in

Ornithine Transcarbamylase Deficiency: Pathogenesis of the Cerebral Disorder and New Prospects for Therapy

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Ornithine Transcarbamylase (OTC) is a key urea cycle enzyme. Congenital OTC deficiencies in humans result in hyperammonemia and a spectrum of neurological symptoms including hypotonia, seizures and mental retardation. Neuropathologic evaluation reveals cerebral atrophy, ventricular enlargement and Alzheimer type II astrocytosis. Using an animal model of congenital OTC deficiency, the sparse fur (spf) mouse, recent studies have revealed significant alterations of cholinergic, serotoninergic and glutamatergic neurotransmitter systems. Possible pathophysiologic mechanisms responsible for neuronal cell loss in OTC deficiency include a deficit in cerebral energy metabolism, and glutamate excitotoxicity. Therapy continues to rely on alternative substrate administration including sodium benzoate and sodium phenylacetate. Experimental evidence suggests that acetyl-L-carnitine and glutamate (NMDA) receptor antagonists could be potentially useful therapeutic agents. Liver transplantation is effective in many patients and recent experimental studies using adenoviral vectors suggest that gene therapy may ultimately be useful in the treatment of congenital OTC deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anholt, R.R.H. (1986). Mitochondrial benzodiazepine receptors as potential modulators of intermediary metabolism. TiPS 7:506–511.

    Google Scholar 

  • Arauja, D.M., Lapchak, P.A., Robitaille, Y., Gauthier, S. and Quirion, R. (1988). Differential alterations of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer's disease. J. Neurochem. 50:19114–1923.

    Google Scholar 

  • Bachmann, C. and Colombo, J.P. (1984). Increase of tryptophan and 5-hydroxyindoleacetic acid in the brain of ornithine carbamoyl transferase deficient sparse-fur mice. Pediatr. Res. 18:372–375.

    Google Scholar 

  • Bakker, M.H.M. and Foster, A.C. (1991). An investigation of the mechanisms of delayed neuron degeneration caused by direct injection of quinolinic acid into the rat striatum in vivo. Neuroscience 42:387–395.

    Google Scholar 

  • Bassi S., Ferrarese, C., Finola, M.G., Frattola, L., Iannucelli, M., Meregalli, S. et al. (1988). L-acetyl-carnitine in Alzheimer Disease (AD) and Senile Dementia of the Alzheimer Type (SDAT), in Senile Dementias (Second International Symposium) (A. Agnoli, J. Cahn, N. Larsen and R. Mayeux, eds.), John Libbey Eurotext, Paris, pp. 461–466.

    Google Scholar 

  • Batshaw, M.L., Robinson, M.B., Hyland, K., Djali, S. and Heyes, M.P. (1993). Quinolinic acid in children with congenital hyperammonemia. Ann. Neurol. 34:676–681.

    Google Scholar 

  • Batshaw, M.L., Hyman, S.L., Coyle, J.T., Robinson, M.B., Qureshi, I.A., Millits, E.D., and Quaskey, S. (1988). Effect of sodium benzoate and sodium phenylacetate on brain serotonin turnover in the ornithine transcarbamylase-deficient sparse-fur mouse. Pediatr. Res. 23:368–374.

    Google Scholar 

  • Broelsch, E.C., Emond, J.C., Whitington, P.F., Thistlethwaite, J.R., Baker, A.L., and Lichtor, J.L. (1990). Application of reduced-size liver transplants as split grafts, auxiliary orthotopic grafts, and liver related segmental transplants. Ann. Surg. 212:368–375.

    Google Scholar 

  • Brusilow, S.W. and Horwich, A.L. (1995). Urea cycle enzymes. In (C.R. Scriver, A.L. Beaudet, W.S. Sly et al. (eds.) The Metabolic and Molecular Basis of Inherited Disease, 7th Ed. New York: McGraw-Hill Information Services, pp. 1187–1232.

    Google Scholar 

  • Brusilow, S.W., Valle, D.L., and Batshaw, M. (1979). New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 2:452–454.

    Google Scholar 

  • Chaouloff, F., Laude, D., Mignot, E., Kamoun, P., and Elghozi, J.L. (1985). Tryptophan and serotonin turnover rate in the brain of genetically hyperammonemic mice. Neurochem. Int. 7:143–153.

    Google Scholar 

  • Christodoulou, J., Qureshi, I.A., McInnes, R.F. and Clarke, J.T.R. (1993). Ornithine transcarbamylase deficiency presenting with stroke-like episodes. J. Pediatr. 122:423–425.

    Google Scholar 

  • Colombo, J.P. (1971). Congenital disorders of the urea cycle and ammonia detoxification. Monogr. Paediatr. 1, Karger, Basel.

    Google Scholar 

  • Connelly, A., Cross, J.H., Gadian, D.G., Hunter, J.V., Kirkham, F.J., and Leonard, J.V. (1993). Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr. Res. 33:77–81.

    Google Scholar 

  • Demars, R., Levan, S.L., Trend, B.L., and Russel, L.B. (1976). Abnormal ornithine carbamyl transferase in mice having the sparse-fur mutation. Proc. Natl. Acad. Sci. USA 23:1693–1698.

    Google Scholar 

  • Dolman, C.L. Clasen, R.A., and Dorovini-Zis K. (1988). Severe cerebral damage in ornithine transcarbamylase deficiency. Clin. Neuropathol. 7:10–15.

    Google Scholar 

  • Filloux, F., Townsend, J.J., and Leonard, C. (1986). Ornithine transcarbamylase deficiency: neuropathologic changes acquired in utero. J. Pediat. 108:942–945.

    Google Scholar 

  • Giguère, J.F., Hamel, E. and Butterworth, R.F. (1992). Increased densities of binding sites for the mitochondrial benzodiazepine receptor ligand 3H-PK11195 in rat brain following portacaval anastomosis. Brain Res. 585:295–298.

    Google Scholar 

  • Harding, B.N., Leonard, J.V., and Erdohazi, M. (1984). Ornithine transcarbamylase deficiency: neuropathological study. Eur. J. Pediatr. 141:215.

    Google Scholar 

  • Harper, C.G. and Butterworth, R.F. (1997). Nutritional and metabolic disorders in (D.I. Graham and P.L. Lantos, eds) Greenfield's Neuropathology, Arnold, London, UK, 1997, pp. 601–655.

    Google Scholar 

  • Hasegawa, T., Tzakis, A.G., Todo, S., Reyes, J., Nour, B., Finegold, D.N. et al. (1995). Orthotopic liver transplantation for ornithine transcarbamylase deficiency with hyperammonemic encephalopathy. J. Pediat. Surg. 30:863–865.

    Google Scholar 

  • Hyman. S.L., Porter, C.A., Page, J.J., Iwata, B.A., Kissel, R., and Batshaw, M.L. (1988). Behavioral management of feeding disturbances in urea cycle and organic acid disorders. J. Pediatr. 111:558–562.

    Google Scholar 

  • Inoue, I., Shimizu, T., Saheki, T., Noda, T., and Fukuda, T. (1989). Serotonin-and catecholamine-related substances in the brain of ornithine transcarbamylase-deficient sparse-fur mice in the hyperammonemic state: comparison of two procedures for obtaining brain extract, decapitation and microwave irradiation. Biochem. Med. Metab. Biol. 42:232–239.

    Google Scholar 

  • Inui, A., Fujisawa, T., Komatsu, H., Tanaka, K., and Inui, M. (1996). Histological improvement in native liver after auxiliary partial liver transplantation for ornithine transcarbamylase deficiency [letter]. Lancet 348:751–752.

    Google Scholar 

  • Kalbag, S.S. and Palekar, A.G. (1988). Sodium benzoate inhibits fatty acid oxidation in rat liver. Effect on ammonia levels. Biochem. Med. Metab. Biol. 40:133–142.

    Google Scholar 

  • Kendall, B.E., Kingsley, D.P.E., Leonard, J.V., Lingam, S., and Oberholzer, V.G. (1983). Neurological features and computed tomography of the brain in children with ornithine carbamoyl transferase deficiency. J. Neurol. Neurosurg. Psychiatry 46:28–34.

    Google Scholar 

  • Lai, J.C.K. and Cooper, A.J.L. (1986). Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution and effects of inhibitors. J. Neurochem. 47:1376–1386.

    Google Scholar 

  • Lavoie, J., Pomier Layrargues, G., and Butterworth, R.F. (1990). Increased densities of “peripheral-type” benzodiazepine receptors in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Hepatology 11:874–878.

    Google Scholar 

  • Matsuoka, M., Igisu, H., Kohriyama, K., and Inoue, N. (1991). Suppression of neurotoxicity of ammonia by L-carnitine. Brain Res. 567:328–331.

    Google Scholar 

  • Matsuoka, M. and Igisu, H. (1993). Effects of L-and D-carnitine on brain energy metabolites in mice given sublethal doses of ammonium acetate. Pharmacol. & Toxicol. 72:145–147.

    Google Scholar 

  • Michalak, A. and Qureshi, I.A. (1995a). Free and esterified coenzyme A in the liver and muscles of chronically hyperammonemic mice treated with sodium benzoate. Biochem. and Molec. Med. 54:96–104.

    Google Scholar 

  • Michalak, A. and Qureshi, I.A. (1995b). Tissue acylcarnitine and acyl-coenzyme A profiles in chronically hyperammonemic mice treated with sodium benzoate and supplementary L-carnitine. Biomed. & Pharmacother. 49:350–357.

    Google Scholar 

  • Morsy, M.A. and Caskey, C.T. (1994). Ornithine transcarbamylase deficiency: a model for gene therapy. In (V. Felipo and S. Grisolia, eds.) Hepatic Encephalopathy, Hyperammonemia and Ammonia Toxicity, Plenum Press, New York, pp. 145–154.

    Google Scholar 

  • Msall, M., Batshaw, M.L., Suss, R., Brusilow, S.W., and Mellits, E.D. (1984). Neurologic outcome in children with inborn errors of urea synthesis. New Engl. J. Med. 310:1500–1505.

    Google Scholar 

  • O'Connor, J.E., Costell, M., Miguez, M.P., and Grisolia, S. (1986). Influence of the route of administration on the protective effect of L-carnitine on acute hyperammonemia. Biochem. Pharmacol. 35:3173–3176.

    Google Scholar 

  • Qureshi, I.A. (1992). Animal models of hereditary hyperammonemias. In: (A. Boulton, G. Baker, and R. Butterworth, eds.) Neuromethods, Vol. 22: Animal Models of Neurological Disease, II, Humana Press, Clifton N.J. pp. 329–356.

    Google Scholar 

  • Raghavendra Rao, V.L., Qureshi, I.A., and Butterworth, R.F. (1993). Increased densities of binding sites for the peripheral-type benzodiazepine receptor ligand [3H]PK11195 in congenital ornithine transcarbamylase-deficient sparse fur mouse. Pediatr. Res. 34:777–780.

    Google Scholar 

  • Raghavendra Rao, V.L., Qureshi, I.A., and Butterworth, R.F. (1994). Activities of monoamine oxidase-A and-B are altered in the brains of congenitally hyperammonemic sparse-fur (spf) mice. Neurosci. Lett. 170:27–30.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1992). Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem. Biophys. Res. Commun. 184:746–751.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1993a). Evidence for a severe cholinergic neuronal deficit in brain in congenital ornithine transcarbamylase (OTC) deficiency. Soc. Neurosci. Abs. 19:122.13.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1993b). Effect of sodium benzoate on cerebral and hepatic energy metabolites in spf mice with congenital hyperammonemia. Biochem. Pharmacol. 45:137–146.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1993c). Effect of L-carnitine on cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fuce mice and its role during benzoate therapy. Metabolism 42:1039–1046.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1994a). Regional amino acid neurotransmitter changes in brains of spf/Y mice with congenital ornithine transcarbamylase deficiency. Metab. Brain Dis. 9:43–51.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1994b). Evidence for cholinergic neuronal loss in brain in congenital ornithine transcarbamylase deficiency. Neurosci. Lett. 178:63–65.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., Maysinger, D., and Butterworth, R.F. (1995a). Developmental deficiency of the cholinergic system in congenitally hyperammonemic spf mice: effect of acetyl-L-carnitine. J. Pharmacol. Exp. Ther. 274:437–443.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1995b). Loss of [3H]MK801 binding sites in brain in congenital ornithine transcarbamylase deficiency. Metab. Brain Dis. 10:249–255.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., Butterworth, R.F., Marescau, B., and De Deyn, P.P. (1996a). Arginine-related guanidino compounds and nitric oxide synthase in the brain of ornithine transcarbamylase deficient spf mutant mouse: effect of metabolic arginine deficiency. In (P.P. De Deyn et al., eds.) Guanidino Compounds, John Libby and Co., pp. 17–20.

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1996b). Central muscarinic cholinergic M1 and M2 receptor changes in congenital ornithine transcarbamylase deficiency. Pediat. Res. 40:25–28.

    Google Scholar 

  • Robinson, M.B., Hopkins, K., Batshaw, M.L., McLaughlin, B.A., Heyes, M.P., and Oster-Granite, M.L. (1995a). Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur mouse. Dev. Brain Res. 90:35–44.

    Google Scholar 

  • Robinson, M.B., Batshaw, M.L., Ye, X., and Wilson, J.M. (1995b). Prospects for gene therapy in ornithine carbamoyltransferase deficiency and other urea cycle disorders. MRDS Res. Rev. 1:62–70.

    Google Scholar 

  • Robinson, M.B., Anegawa, N.J., Gorry E. et al. (1992a). Brain serotonin2 and serotonin1A receptors are altered in the congenitally hyperammonemic sparse fur mouse. J. Neurochem. 58: 1016–1022.

    Google Scholar 

  • Robinson, M.B., Heyes, M.P., Anegawa, N.J. et al. (1992b). Quinolinate in brain and cerebrospinal fluid in rat models of congenital hyperammonemia. Pediatr. Res. 32:483–488.

    Google Scholar 

  • Schwarcz, R., Whetsell, W.O., Jr., and Mangano, R.M. (1983). Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318.

    Google Scholar 

  • Simmonds, M.A. (1991). Modulation of the GABAA receptor by steroids. Seminars in Neurosci. 3:231–29.

    Google Scholar 

  • Takayanagi, M., Ohtake, A., Ogura, N., Nakajima, H., and Hoshino, M. (1984). A female case of ornithine transcarbamylase deficiency with marked computed tomographic abnormalities of the brain. Brain Dev. 6:58.

    Google Scholar 

  • Todo, S., Starzl, T.E., Tzakis, A., Benkov, K.J., Kalousek, F., Saheki, T., Tanikawa, K., and Fenton, W.A. (1992). Orthotopic liver transplantation for urea cycle enzyme deficiency. Hepatology 15:419–422.

    Google Scholar 

  • Tucek, S. (1985). Regulation of acetylcholine synthesis in the brain. J. Neurochem. 44:11–24.

    Google Scholar 

  • Tuchman, M., Plante, R.J., Garcia-Perez, M.A. and Rubio, V. (1996). Relative frequency of mutation causing ornithine transcarbamylase deficiency in 78 families. Human Genetics 97:274–276.

    Google Scholar 

  • Veres, G. Gibbs, R.A., Scherer, S.E. and Caskey, C.T. (1987). The molecular basis of the sparse fur mutation. Science 237:415–417.

    Google Scholar 

  • Ye, X., Robinson, M.B., Batshaw, M.L., Furth, E.E., Smith, I. and Wilson, J.M. (1996). Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J. Biol. Chem. 271:3639–3646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalak, A., Butterworth, R.F. Ornithine Transcarbamylase Deficiency: Pathogenesis of the Cerebral Disorder and New Prospects for Therapy. Metab Brain Dis 12, 171–182 (1997). https://doi.org/10.1023/B:MEBR.0000007098.80372.68

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MEBR.0000007098.80372.68

Navigation