Skip to main content
Log in

Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mutations in the cardiac troponin I (CTnI) gene occur in ∼5% of families with familial hypertrophic cardiomyopathy (FHC) and 20 mutations in this gene that cause FHC have now been described. The clinical manifestations of CTnI mutations that cause FHC are diverse, ranging from asymptomatic with high life expectancy to severe heart failure and sudden cardiac death. Most of these FHC mutations in CTnI result in cardiac hypertrophy unlike cardiac troponin T FHC mutations. All CTnI FHC mutations investigated in vitro affect the physiological function of CTnI, but other factors such as environmental or genetic factors (other genes that may affect the CTnI gene) are likely to be involved in influencing the severity of the phenotype produced by these mutations, since the distribution of hypertrophy among affected individuals varies within and between families. CTnI mutations mainly alter myocardial performance via changes in the Ca2+-sensitivity of force development and in some cases alter the muscle relaxation kinetics due to haemodynamic or physical obstructions of blood flow from the left ventricle. (Mol Cell Biochem 263: 99–114, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG: A molecular basis for familial hyper-trophic cardiomyopathy: A beta cardiac myosin heavy chain gene mis-sense mutation. Cell 62: 999–1006, 1990

    Google Scholar 

  2. Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND: Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69, 1996

    Google Scholar 

  3. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE: Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell 77: 701–712, 1994

    Google Scholar 

  4. Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Rosberg HP, Fiszman M, Kanajda M, Schwartz K: Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hyper-trophic cardiomyopathy. Nat Genet 11: 438–440, 1995

    Google Scholar 

  5. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE: Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hy-pertrophic cardiomyopathy. Nat Genet 11:434–437, 1995

    Google Scholar 

  6. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T: Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 16: 379–382, 1997

    Google Scholar 

  7. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD: Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103: R39–R43, 1999

    Google Scholar 

  8. Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A: Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochem Biophys Res Commun 262: 411–417, 1999

    Google Scholar 

  9. Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R: First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat 17: 524, 2001

    Google Scholar 

  10. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE: Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CAR-DIA Study. Coronary artery risk development in (young) adults. Circulation 92: 785–789, 1995

    Google Scholar 

  11. Vallins WJ, Brand NJ, Dabhade N, Butler-Browne G, Yacoub MH, Bar-ton PJ: Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett 270: 57–61, 1990

    Google Scholar 

  12. Bhavsar PK, Brand NJ, Yacoub MH, Barton PJ: Isolation and charac-terization of the human cardiac troponin I gene (TNNI3). Genomics 35: 11–23, 1996

    Google Scholar 

  13. Bermingham N, Hernandez D, Balfour A, Gilmour F, Martin JE, Fisher EM: Mapping TNNC1, the gene that encodes cardiac troponin I in the human and the mouse. Genomics 30: 620–622, 1995

    Google Scholar 

  14. Zot AS, Potter JD: Structural aspects of troponin-tropomyosin regula-tion of skeletal muscle contraction. Annu Rev Biophys Biophys Chem 16: 535–559, 1987

    Google Scholar 

  15. Solaro RJ, Rarick HM: Troponin and tropomyosin: Proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 83: 471–480, 1998

    Google Scholar 

  16. Anderson PA, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, Kay BK: Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 76: 681–686, 1995

    Google Scholar 

  17. Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ: Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72: 932–938, 1993

    Google Scholar 

  18. Perry SV: Troponin I: Inhibitor or facilitator. Mol Cell Biochem 190: 9–32, 1999

    Google Scholar 

  19. Pi Y, Kemnitz KR, Zhang D, Kranias EG, Walker JW: Phosphorylation of troponin I controls cardiac twitch dynamics: Evidence from phos-phorylation site mutants expressed on a troponin I-null background in mice. Circ Res 90: 649–656, 2002

    Google Scholar 

  20. Takeda S, Yamashita A, Maeda K, Maeda Y: Structure of the core domain in human cardiac troponin in the Ca 2 + saturated form. Nature 424: 35–41, 2003

    Google Scholar 

  21. Cabral-Lilly D, Tobacman LS, Mehegan JP, Cohen C: Molecular polar-ity in tropomyosin–troponin T co-crystals. Biophys J 73: 1763–1770, 1997

    Google Scholar 

  22. Malnic B, Farah CS, Reinach FC: Regulatory properties of the NH2-and COOH-terminal domains of troponin T. ATPase activation and binding to troponin I and troponin C. J Biol Chem 273: 10594–10601, 1998

    Google Scholar 

  23. Oliveira DM, Nakaie CR, Sousa AD, Farah CS, Reinach FC: Mapping the domain of troponin T responsible for the activation of actomyosin ATPase activity. Identification of residues involved in binding to actin. J Biol Chem 275: 27513–27519, 2000

    Google Scholar 

  24. Stefancsik R, Jha PK, Sarkar S: Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I.113 binding: Potential role for coiled coil interaction. Proc Natl Acad Sci USA 95: 957–962, 1998

    Google Scholar 

  25. Geeves MA, Lehrer SS: Dynamics of the muscle thin filament regula-tory switch: The size of the cooperative unit. Biophys J 67: 273–282, 1994

    Google Scholar 

  26. Lehrer SS, Geeves MA: The muscle thin filament as a classical cooper-ative/ allosteric regulatory system. J Mol Biol 277: 1081–1089, 1998

    Google Scholar 

  27. Squire JM, Morris EP: A new look at thin filament regulation in verte-brate skeletal muscle. Faseb J 12: 761–771, 1998

    Google Scholar 

  28. Luo Y, Leszyk J, Li B, Li Z, Gergely J, Tao T: Troponin-I interacts with the Met47 region of skeletal muscle actin. Implications for the mechanism of thin filament regulation by calcium. J Mol Biol 316: 429–434, 2002

    Google Scholar 

  29. Kokado H, Shimizu M, Yoshio H, Ino H, Okeie K, Emoto Y, Matsuyama T, Yamaguchi M, Yasuda T, Fujino N, Ito H, Mabuchi H: Clinical fea-tures of hypertrophic cardiomyopathy caused by a Lys183 deletion mu-tation in the cardiac troponin I gene. Circulation 102: 663–669, 2000

    Google Scholar 

  30. Morner S, Richard P, Kazzam E, Hainque B, Schwartz K, Waldenstrom A: Deletion in the cardiac troponin I gene in a family from northern Sweden with hypertrophic cardiomyopathy. J Mol Cell Cardiol 32: 521–525, 2000

    Google Scholar 

  31. Genomics of Cardiovascular Development A, and Remodeling: NHLBI Program for Genomic Applications, Beth Israel Deaconess Medical Center. Available at http://www.cardiogenomics.org, Aug 2003

  32. Ellsworth EG, Van Driest SL, Nishimura RA, Gersh BJ, Tajik AJ, Om-men SR, Ackerman MJ: Prevalence and spectrum of cardiac troponin I mutations in hypertrophic cardiomyopathy. Circulation 106: II–289, 2002

    Google Scholar 

  33. Mogensen J, Klausen IC, Egeblad H, Baandrup U, Borglum AD: Sudden cardiac death in familial hypertrophic cardiomyopathy is associated with a novel mutation in the troponin I gene. Circulation 100: I–618, 1999

    Google Scholar 

  34. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M. Hypertrophic Car-diomyopathy. Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107: 2227–2232, 2003

    Google Scholar 

  35. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE: Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 105: 446–451, 2002

    Google Scholar 

  36. Shimizu M, Ino H, Yamaguchi M, Terai H, Hayashi K, Kiyama M, Sakata K, Hayashi T, Inoue M, Kaneda T, Mabuchi H: Chronologic electrocardiographic changes in patients with hypertrophic cardiomy-opathy associated with cardiac troponin 1 mutation. Am Heart J 143: 289–293, 2002

    Google Scholar 

  37. McKenna WJ, Spirito P, Desnos M, Dubourg O, Komajda M:Experience from clinical genetics in hypertrophic cardiomyopathy: Proposal for new diagnostic criteria in adult members of affected families. Heart 77: 130–132, 1997

    Google Scholar 

  38. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, Ahmad F, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R, Hassan AS: Identification of a gene responsible for familial Wolff–Parkinson–White syndrome. N Engl J Med 344: 1823–1831, 2001

    Google Scholar 

  39. Lang R, Gomes AV, Zhao J, Housmans PR, Miller T, Potter JD: Func-tional analysis of a troponin I (Arg145Gly) mutation associated with familial hypertrophic cardiomyopathy. J Biol Chem 277: 11670–11678, 2002

    Google Scholar 

  40. Takahashi-Yanaga F, Morimoto S, Ohtsuki I: Effect of Arg145Gly mu-tation in human cardiac troponin I on the ATPase activity of cardiac myofibrils. J Biochem (Tokyo) 127: 355–357, 2000

    Google Scholar 

  41. Takahashi-Yanaga F, Morimoto S, Harada K, Minakami R, Shiraishi F, Ohta M, Lu QW, Sasaguri T, Ohtsuki I: Functional consequences of the mutations in human cardiac troponin I gene found in famil-ial hypertrophic cardiomyopathy. J Mol Cell Cardiol 33: 2095–2107, 2001

    Google Scholar 

  42. Elliott K, Watkins H, Redwood CS: Altered regulatory properties of hu-man cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J Biol Chem 275: 22069–22074, 2000

    Google Scholar 

  43. Burton D, Abdulrazzak H, Knott A, Elliott K, Redwood C, Watkins H, Marston S, Ashley C: Two mutations in troponin I that cause hy-pertrophic cardiomyopathy have contrasting effects on cardiac muscle contractility. Biochem J 362: 443–451, 2002

    Google Scholar 

  44. James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, Robbins J: Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 87: 805–811, 2000

    Google Scholar 

  45. Armour KL, Harris WJ, Tempest PR: Cloning and expression in Es-cherichia coli of the cDNA encoding human cardiac troponin I. Gene 131: 287–292, 1993

    Google Scholar 

  46. Zhang R, Zhao J, Mandveno A, Potter JD: Cardiac troponin I phospho-rylation increases the rate of cardiac muscle relaxation. Circ Res 76: 1028–1035, 1995

    Google Scholar 

  47. Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, Solaro RJ: Phosphorylation of troponin I by protein kinase Aaccelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 88: 1059–1065, 2001

    Google Scholar 

  48. Reiffert SU, Jaquet K, Heilmeyer LM, Jr., Herberg FW: Stepwise sub-unit interaction changes by mono-and bis-phosphorylation of cardiac troponin I. Biochemistry 37: 13516–13525, 1998

    Google Scholar 

  49. Dohet C, al-Hillawi E, Trayer IP, Ruegg JC: Reconstitution of skinned cardiac fibres with human recombinant cardiac troponin-I mutants and troponin-C. FEBS Lett 377: 131–134, 1995

    Google Scholar 

  50. Quirk PG, Patchell VB, Gao Y, Levine BA, Perry SV: Sequential phosphorylation of adjacent serine residues on the N-terminal region of car-diac troponin-I: Structure-activity implications of ordered phosphory-lation. FEBS Lett 370: 175–178, 1995

    Google Scholar 

  51. Deng Y, Schmidtmann A, Redlich A, Westerdorf B, Jaquet K, Thieleczek R: Effects of phosphorylation and mutation R145G on hu-man cardiac troponin I function. Biochemistry 40: 14593–14602, 2001

    Google Scholar 

  52. Montgomery DE, Wolska BM, Pyle WG, Roman BB, Dowell JC, Buttrick PM, Koretsky AP, Del Nido P, Solaro RJ: Alpha-adrenergic re-sponse and myofilament activity in mouse hearts lacking PKC phos-phorylation sites on cardiac TnI. Am J Physiol Heart Circ Physiol 282: H2397–H2405, 2002

    Google Scholar 

  53. Noland TA, Jr., Guo X, Raynor RL, Jideama NM, Averyhart-Fullard V, Solaro RJ, Kuo JF: Cardiac troponin I mutants. Phosphorylation by protein kinases C and A and regulation of Ca 2 +-stimulated MgAT-Pase of reconstituted actomyosin S-1. J Biol Chem 270: 25445–25454, 1995

    Google Scholar 

  54. Lindhout DA, Li MX, Schieve D, Sykes BD: Effects of T142 phosphory-lation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C. Biochemistry 41: 7267–7274, 2002

    Google Scholar 

  55. Li MX, Wang X, Buscemi N, Van Eyk JE, Sykes BD: Novel phosphory-lation of Ser 149 in cardiac troponin I (cTnI) by PAKreduces the affinity of cTnI for cardiac troponin C (cTnC). Biophys J 82: 389A, 2002

    Google Scholar 

  56. Ruse CI, Willard B, Jin JP, Haas T, Kinter M, Bond M: Kinetics and sto-ichiometry of protein phosphorylation at the amino acid level. Biophys J 82: 389A, 2002

    Google Scholar 

  57. Ramos CH: Mapping subdomains in the C-terminal region of troponin I involved in its binding to troponin C and to thin filament. J Biol Chem 274: 18189–18195, 1999

    Google Scholar 

  58. Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda Y: Crystal structure of troponin C in complex with troponin I fragment at 2.3-° A resolution. Proc Natl Acad Sci USA 95: 4847–4852, 1998

    Google Scholar 

  59. Ferrieres G, Pugniere M, Mani JC, Villard S, Laprade M, Doutre P, Pau B, Granier C: Systematic mapping of regions of human cardiac.114 troponin I involved in binding to cardiac troponin C: N-and C-terminal low affinity contributing regions. FEBS Lett 479: 99–105, 2000

    Google Scholar 

  60. Li MX, Saude EJ, Wang X, Pearlstone JR, Smillie LB, Sykes BD: Kinetic studies of calcium and cardiac troponin I peptide binding to human cardiac troponin C using NMR spectroscopy. Eur Biophys J 31: 245–256, 2002

    Google Scholar 

  61. Rarick HM, Tu XH, Solaro RJ, Martin AF: The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca 2 + sensitivity of rat myofibrils. J Biol Chem 272: 26887–6892, 1997

    Google Scholar 

  62. Farah CS, Miyamoto CA, Ramos CH, da Silva AC, Quaggio RB, Fujimori K, Smillie LB, Reinach FC: Structural and regulatory functions of the NH2-and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269: 5230–5240, 1994

    Google Scholar 

  63. Murphy AM, Kogler H, Georgakopoulos D, McDonough JL, Kass DA, Van Eyk JE, Marban E: Transgenic mouse model of stunned my-ocardium. Science 287: 488–491, 2000

    Google Scholar 

  64. Syska H, Wilkinson JM, Grand RJ, Perry SV: The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153: 375–387, 1976

    Google Scholar 

  65. Talbot JA, Hodges RS: Synthesis and biological activity of an icosapep-tide analog of the actomyosin ATPase inhibitory region of troponin I. J Biol Chem 254: 3720–3723, 1979

    Google Scholar 

  66. Talbot JA, Hodges RS: Comparative studies on the inhibitory region of selected species of troponin-I. The use of synthetic peptide analogs to probe structure-function relationships. J Biol Chem 256: 12374–12378, 1981

    Google Scholar 

  67. Van Eyk JE, Hodges RS: The biological importance of each amino acid residue of the troponin I inhibitory sequence 104–115 in the interaction with troponin C and tropomyosinactin. J Biol Chem 263: 1726–1732, 1988

    Google Scholar 

  68. Levine BA, Moir AJ, Perry SV: The interaction of troponin-I with the N-terminal region of actin. Eur J Biochem 172: 389–397, 1988

    Google Scholar 

  69. Szczesna D, Zhang R, Zhao J, Jones M, Potter JD: The role of the NH2-and COOH-terminal domains of the inhibitory region of troponin I in the regulation of skeletal muscle contraction. J Biol Chem 274: 29536–29542, 1999

    Google Scholar 

  70. Tripet B, Van Eyk JE, Hodges RS: Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca 2 +-dependent regulation of muscle contraction. J Mol Biol 271: 728–750, 1997

    Google Scholar 

  71. Van Eyk JE, Thomas LT, Tripet B, Wiesner RJ, Pearlstone JR, Farah CS, Reinach FC, Hodges RS: Distinct regions of troponin I regulate Ca 2 +-dependent activation and Ca 2 + sensitivity of the acto-S1-TM AT-Pase activity of the thin filament. J Biol Chem 272: 10529–10537, 1997

    Google Scholar 

  72. D'Cruz LG, Baboonian C, Phillimore HE, Taylor R, Elliott PM, Varnava A, Davison F, McKenna WJ, Carter ND: Cytosine methylation confers instability on the cardiac troponin T gene in hypertrophic cardiomyopathy. J Med Genet E 37: 18, 2000

    Google Scholar 

  73. Buja G, Miorelli M, Turrini P, Melacini P, Nava A: Comparison of QT dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am J Cardiol 72: 973–976, 1993

    Google Scholar 

  74. Shimizu M, Ino H, Okeie K, Yamaguchi M, Nagata M, Hayashi K, Itoh H, Iwaki T, Oe K, Konno T, Mabuchi H: T-peak to T-end interval maybe a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol 25: 335–339, 2002

    Google Scholar 

  75. Naimi B, Harrison A, Cummins M, Nongthomba U, Clark S, Canal I, Ferrus A, Sparrow JC: A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila. Mol Biol Cell 12: 1529–1539, 2001

    Google Scholar 

  76. Kronert WA, Acebes A, Ferrus A, Bernstein SI: Specific myosin heavy chain mutations suppress troponin I defects in Drosophila muscles. J Cell Biol 144: 989–1000, 1999

    Google Scholar 

  77. Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, Gimeno JR, Elliott P, McKenna WJ: Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111: 209–216, 2003

    Google Scholar 

  78. Seidman CE, Seidman JG: Molecular genetic studies of familial hy-pertrophic cardiomyopathy. Basic Res Cardiol 93(suppl 3):13–16, 1998

    Google Scholar 

  79. Watkins H, Seidman CE, Seidman JG, Feng HS, Sweeney HL: Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. J Clin Invest 98: 2456–2461, 1996

    Google Scholar 

  80. Grand RJ, Wilkinson JM: The amino acid sequence of rabbit cardiac troponin I. Biochem J 159: 633–641, 1976

    Google Scholar 

  81. Wilkinson JM, Grand RJ: Comparison of amino acid sequence of tro-ponin I from different striated muscles. Nature 271: 31–35, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A.V., Potter, J.D. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem 263, 99–114 (2004). https://doi.org/10.1023/B:MCBI.0000041852.42291.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000041852.42291.aa

Navigation