Skip to main content

Molecular Mechanism of Sarcomeric Cardiomyopathies

  • Chapter
  • First Online:
Congestive Heart Failure and Cardiac Transplantation

Abstract

In the early 1990s, researchers identified a genetic basis for hypertrophic cardiomyopathy (HCM) (Geisterfer-Lowrance et al., Cell, 62(5):999–1006, 1990). They proposed that mutations in sarcomeric genes are causal for the hypertrophic phenotype. This opened the door to a new understanding of the disease pathology (Seidman and Seidman, Cell, 104(4):557–67, 2001). Experimentation into the molecular mechanisms of these mutations, along with increased genetic testing, revealed that sarcomeric gene mutations are also causal for dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). This led to the redefining of these familial diseases as sarcomeric cardiomyopathies (Tardiff et al., Cardiovasc Res, 105(4):457–70, 2015; van der Velden et al., Cardiovasc Res, 105(4):449–56, 2015). This chapter provides an overview of the molecular mechanisms of sarcomeric cardiomyopathies and experimental therapies that target these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62(5):999–1006.

    Article  CAS  PubMed  Google Scholar 

  2. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–67.

    Article  CAS  PubMed  Google Scholar 

  3. Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, Maier LS, Ashrafian H, Huke S, van der Velden J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):457–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Velden J, Ho CY, Tardiff JC, Olivotto I, Knollmann BC, Carrier L. Research priorities in sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80(2):853–924.

    CAS  PubMed  Google Scholar 

  6. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  CAS  PubMed  Google Scholar 

  7. Li MX, Spyracopoulos L, Sykes BD. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry. 1999;38(26):8289–98.

    Article  CAS  PubMed  Google Scholar 

  8. Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol. 2010;48(5):882–92.

    Article  CAS  PubMed  Google Scholar 

  9. Farah CS, Reinach FC. The troponin complex and regulation of muscle contraction. FASEB J. 1995;9(9):755–67.

    CAS  PubMed  Google Scholar 

  10. Tobacman LS. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol. 1996;58:447–81.

    Article  CAS  PubMed  Google Scholar 

  11. Huke S, Knollmann BC. Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J Mol Cell Cardiol. 2010;48(5):824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yasuda S, Coutu P, Sadayappan S, Robbins J, Metzger JM. Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes. Circ Res. 2007;101(4):377–86.

    Article  CAS  PubMed  Google Scholar 

  13. Day SM, Westfall MV, Metzger JM. Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. J Mol Med (Berl). 2007;85(9):911–21.

    Article  Google Scholar 

  14. Wolff MR, Buck SH, Stoker SW, Greaser ML, Mentzer RM. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest. 1996;98(1):167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nonaka M, Morimoto S. Experimental models of inherited cardiomyopathy and its therapeutics. World J Cardiol. 2014;6(12):1245–51.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60(8):705–15.

    Article  PubMed  Google Scholar 

  17. Lu QW, Wu XY, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. J Geriatr Cardiol. 2013;10(1):91–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J. 2014;106(6):1236–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ho CY. Genetic considerations in hypertrophic cardiomyopathy. Prog Cardiovasc Dis. 2012;54(6):456–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Coppini R, Ho CY, Ashley E, Day S, Ferrantini C, Girolami F, Tomberli B, Bardi S, Torricelli F, Cecchi F, Mugelli A, Poggesi C, Tardiff J, Olivotto I. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol. 2014;64(24):2589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, Shen J, McLaughlin HM, Clark EH, Babb LJ, Cox SW, DePalma SR, Ho CY, Seidman JG, Seidman CE, Rehm HL. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17:880.

    Article  PubMed  Google Scholar 

  22. Mestroni L, Brun F, Spezzacatene A, Sinagra G, Taylor MR. Genetic causes of dilated cardiomyopathy. Prog Pediatr Cardiol. 2014;37(1-2):13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McNally EM, Puckelwartz MJ. Genetic variation in cardiomyopathy and cardiovascular disorders. Circ J. 2015;79(7):1409–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blankenburg R, Hackert K, Wurster S, Deenen R, Seidman JG, Seidman CE, Lohse MJ, Schmitt JP. beta-Myosin heavy chain variant Val606Met causes very mild hypertrophic cardiomyopathy in mice, but exacerbates HCM phenotypes in mice carrying other HCM mutations. Circ Res. 2014;115(2):227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maron BJ, Ho CY. Hypertrophic cardiomyopathy without hypertrophy: an emerging preclinical subgroup composed of genetically affected family members. JACC Cardiovasc Imaging. 2009;2(1):65–8.

    Article  PubMed  Google Scholar 

  26. Maron BJ, Yeates L, Semsarian C. Clinical challenges of genotype positive (+)-phenotype negative (-) family members in hypertrophic cardiomyopathy. Am J Cardiol. 2011;107(4):604–8.

    Article  PubMed  Google Scholar 

  27. Gollapudi SK, Tardiff JC, Chandra M. The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by alpha- and beta-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol. 2015;308(8):H884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tardiff JC. It’s never too early to look: subclinical disease in sarcomeric dilated cardiomyopathy. Circ Cardiovasc Genet. 2012;5(5):483–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123(1):19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McNally EM. Genetics: broken giant linked to heart failure. Nature. 2012;483(7389):281–2.

    Article  CAS  PubMed  Google Scholar 

  31. Leinwand LA, Tardiff JC, Gregorio CC. Mutations in the sensitive giant titin result in a broken heart. Circ Res. 2012;111(2):158–61.

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, McCully ME, Luo Z, McMichael J, Tu AY, Daggett V, Regnier M. Structural and functional consequences of cardiac troponin C L57Q and I61Q Ca(2+)-desensitizing variants. Arch Biochem Biophys. 2013;535(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Tikunova SB, Kline KP, Siddiqui JK, Davis JP. Disease-related cardiac troponins alter thin filament Ca2+ association and dissociation rates. PLoS One. 2012;7(6):e38259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parvatiyar MS, Pinto JR, Liang J, Potter JD. Predicting cardiomyopathic phenotypes by altering Ca2+ affinity of cardiac troponin C. J Biol Chem. 2010;285(36):27785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lim CC, Yang H, Yang M, Wang CK, Shi J, Berg EA, Pimentel DR, Gwathmey JK, Hajjar RJ, Helmes M, Costello CE, Huo S, Liao R. A novel mutant cardiac troponin C disrupts molecular motions critical for calcium binding affinity and cardiomyocyte contractility. Biophys J. 2008;94(9):3577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis J, Metzger JM. Combinatorial effects of double cardiomyopathy mutant alleles in rodent myocytes: a predictive cellular model of myofilament dysregulation in disease. PLoS One. 2010;5(2):e9140.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Du CK, Zhan DY, Morimoto S. In vivo effects of propyl gallate, a novel Ca(2+) sensitizer, in a mouse model of dilated cardiomyopathy caused by cardiac troponin T mutation. Life Sci. 2014;109(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  38. Du CK, Morimoto S, Nishii K, Minakami R, Ohta M, Tadano N, Lu QW, Wang YY, Zhan DY, Mochizuki M, Kita S, Miwa Y, Takahashi-Yanaga F, Iwamoto T, Ohtsuki I, Sasaguri T. Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation. Circ Res. 2007;101(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  39. Duncker DJ, Bakkers J, Brundel BJ, Robbins J, Tardiff JC, Carrier L. Animal and in silico models for the study of sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tardiff JC. Tropomyosin and dilated cardiomyopathy: revenge of the actinomyosin “gatekeeper”. J Am Coll Cardiol. 2010;55(4):330–2.

    Article  CAS  PubMed  Google Scholar 

  41. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11.

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez OM, Szczesna-Cordary D, Knollmann BC, Miller T, Bell M, Zhao J, Sirenko SG, Diaz Z, Guzman G, Xu Y, Wang Y, Kerrick WG, Potter JD. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy affect muscle contraction in transgenic mice and reconstituted human cardiac fibers. J Biol Chem. 2005;280(44):37183–94.

    Article  CAS  PubMed  Google Scholar 

  43. Chandra M, Rundell VL, Tardiff JC, Leinwand LA, De Tombe PP, Solaro RJ. Ca(2+) activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T. Am J Physiol Heart Circ Physiol. 2001;280(2):H705–13.

    CAS  PubMed  Google Scholar 

  44. Michele DE, Albayya FP, Metzger JM. Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant alpha-tropomyosins in adult cardiac myocytes. Nat Med. 1999;5(12):1413–7.

    Article  CAS  PubMed  Google Scholar 

  45. Davis J, Wen H, Edwards T, Metzger JM. Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin I mutants. J Mol Cell Cardiol. 2008;44(5):891–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104(4):469–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Montgomery DE, Tardiff JC, Chandra M. Cardiac troponin T mutations: correlation between the type of mutation and the nature of myofilament dysfunction in transgenic mice. J Physiol. 2001;536(Pt 2):583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Javadpour MM, Tardiff JC, Pinz I, Ingwall JS. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest. 2003;112(5):768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He H, Javadpour MM, Latif F, Tardiff JC, Ingwall JS. R-92L and R-92W mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts. Biophys J. 2007;93(5):1834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haim TE, Dowell C, Diamanti T, Scheuer J, Tardiff JC. Independent FHC-related cardiac troponin T mutations exhibit specific alterations in myocellular contractility and calcium kinetics. J Mol Cell Cardiol. 2007;42(6):1098–110.

    Article  CAS  PubMed  Google Scholar 

  51. Moore RK, Grinspan LT, Jimenez J, Guinto PJ, Ertz-Berger B, Tardiff JC. HCM-linked 160E cardiac troponin T mutation causes unique progressive structural and molecular ventricular remodeling in transgenic mice. J Mol Cell Cardiol. 2013;58:188–98.

    Article  CAS  PubMed  Google Scholar 

  52. Schlossarek S, Mearini G, Carrier L. Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2011;50(4):613–20.

    Article  CAS  PubMed  Google Scholar 

  53. Mearini G, Stimpel D, Geertz B, Weinberger F, Krämer E, Schlossarek S, Mourot-Filiatre J, Stoehr A, Dutsch A, Wijnker PJ, Braren I, Katus HA, Müller OJ, Voit T, Eschenhagen T, Carrier L. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun. 2014;5:5515.

    Article  CAS  PubMed  Google Scholar 

  54. Tyska MJ, Hayes E, Giewat M, Seidman CE, Seidman JG, Warshaw DM. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res. 2000;86(7):737–44.

    Article  CAS  PubMed  Google Scholar 

  55. Palmer BM, Fishbaugher DE, Schmitt JP, Wang Y, Alpert NR, Seidman CE, Seidman JG, VanBuren P, Maughan DW. Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. Am J Physiol Heart Circ Physiol. 2004;287(1):H91–9.

    Article  CAS  PubMed  Google Scholar 

  56. Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res. 2003;92(4):428–36.

    Article  CAS  PubMed  Google Scholar 

  57. Baudenbacher F, Schober T, Pinto JR, Sidorov VY, Hilliard F, Solaro RJ, Potter JD, Knollmann BC. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest. 2008;118(12):3893–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huke S, Venkataraman R, Faggioni M, Bennuri S, Hwang HS, Baudenbacher F, Knollmann BC. Focal energy deprivation underlies arrhythmia susceptibility in mice with calcium-sensitized myofilaments. Circ Res. 2013;112(10):1334–44.

    Article  CAS  PubMed  Google Scholar 

  59. Schober T, Huke S, Venkataraman R, Gryshchenko O, Kryshtal D, Hwang HS, Baudenbacher FJ, Knollmann BC. Myofilament Ca sensitization increases cytosolic Ca binding affinity, alters intracellular Ca homeostasis, and causes pause-dependent Ca-triggered arrhythmia. Circ Res. 2012;111(2):170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parvatiyar MS, et al. Cardiac troponin mutations and restrictive cardiomyopathy. J Biomed Biotechnol. 2010;2010:350706.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jean-Charles PY, Li YJ, Nan CL, Huang XP. Insights into restrictive cardiomyopathy from clinical and animal studies. J Geriatr Cardiol. 2011;8(3):168–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, Gimeno JR, Elliott P, McKenna WJ. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111(2):209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van den Wijngaard A, Volders P, Van Tintelen JP, Jongbloed JD, van den Berg MP, Lekanne Deprez RH, Mannens MM, Hofmann N, Slegtenhorst M, Dooijes D, Michels M, Arens Y, Jongbloed R, Smeets BJ. Recurrent and founder mutations in the Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy. Neth Heart J. 2011;19(7-8):344–51.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gomes AV, Liang J, Potter JD. Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem. 2005;280(35):30909–15.

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi T, Solaro RJ. Increased Ca2+ affinity of cardiac thin filaments reconstituted with cardiomyopathy-related mutant cardiac troponin I. J Biol Chem. 2006;281(19):13471–7.

    Article  CAS  PubMed  Google Scholar 

  66. Wen Y, Xu Y, Wang Y, Pinto JR, Potter JD, Kerrick WG. Functional effects of a restrictive-cardiomyopathy-linked cardiac troponin I mutation (R145W) in transgenic mice. J Mol Biol. 2009;392(5):1158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wen Y, Pinto JR, Gomes AV, Xu Y, Wang Y, Wang Y, Potter JD, Kerrick WG. Functional consequences of the human cardiac troponin I hypertrophic cardiomyopathy mutation R145G in transgenic mice. J Biol Chem. 2008;283(29):20484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davis J, Wen H, Edwards T, Metzger JM. Thin filament disinhibition by restrictive cardiomyopathy mutant R193H troponin I induces Ca2+-independent mechanical tone and acute myocyte remodeling. Circ Res. 2007;100(10):1494–502.

    Article  CAS  PubMed  Google Scholar 

  69. Davis J, Yasuda S, Palpant NJ, Martindale J, Stevenson T, Converso K, Metzger JM. Diastolic dysfunction and thin filament dysregulation resulting from excitation-contraction uncoupling in a mouse model of restrictive cardiomyopathy. J Mol Cell Cardiol. 2012;53(3):446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Du J, Liu J, Feng HZ, Hossain MM, Gobara N, Zhang C, Li Y, Jean-Charles PY, Jin JP, Huang XP. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am J Physiol Heart Circ Physiol. 2008;294(6):H2604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ho CY, Charron P, Richard P, Girolami F, Van Spaendonck-Zwarts KY, Pinto Y. Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc Res. 2015;105(4):397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hwang PM, Sykes BD. Targeting the sarcomere to correct muscle function. Nat Rev Drug Discov. 2015;14(5):313–28.

    Article  CAS  PubMed  Google Scholar 

  73. Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ, Lang CC, Tsyrlin VA, Greenberg BH, Mayet J, Francis DP, Shaburishvili T, Monaghan M, Saltzberg M, Neyses L, Wasserman SM, Lee JH, Saikali KG, Clarke CP, Goldman JH, Wolff AA, Malik FI. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet. 2011;378(9792):676–83.

    Article  CAS  PubMed  Google Scholar 

  74. Utter MS, Ryba DM, Li BH, Wolska BM, Solaro RJ. Omecamtiv mecarbil, a cardiac myosin activator, increases Ca2+-sensitivity in myofilaments with a dilated cardiomyopathy mutant tropomyosin E54K. J Cardiovasc Pharmacol. 2015;66:347.

    Article  CAS  PubMed  Google Scholar 

  75. Tadano N, Morimoto S, Takahashi-Yanaga F, Miwa Y, Ohtsuki I, Sasaguri T. Propyl gallate, a strong antioxidant, increases the Ca2+ sensitivity of cardiac myofilament. J Pharmacol Sci. 2009;109(3):456–8.

    Article  CAS  PubMed  Google Scholar 

  76. Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest. 2002;109(8):1013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, González A, López B, Diez J, Orav EJ, Colan SD, Seidman CE. Diltiazem treatment for preclinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail. 2015;3(2):180–8.

    Article  PubMed  Google Scholar 

  78. Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovasc Drug Rev. 2007;25(1):76–97.

    Article  CAS  PubMed  Google Scholar 

  79. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122(16):1562–9.

    Article  CAS  PubMed  Google Scholar 

  80. Mearini G, Stimpel D, Krämer E, Geertz B, Braren I, Gedicke-Hornung C, Précigout G, Müller OJ, Katus HA, Eschenhagen T, Voit T, Garcia L, Lorain S, Carrier L. Repair of Mybpc3 mRNA by 5′-trans-splicing in a mouse model of hypertrophic cardiomyopathy. Mol Ther Nucleic Acids. 2013;2:e102.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Précigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med. 2013;5(7):1060–77.

    Article  CAS  PubMed Central  Google Scholar 

  82. Jiang J, Wakimoto H, Seidman JG, Seidman CE. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science. 2013;342(6154):111–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther. 2013;24(11):914–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M, Hajjar RJ. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014;114(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  85. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, Masurier C. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  86. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  Google Scholar 

  87. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev. 2008;88(4):1567–651.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Thompson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thompson, B.R., Asp, M.L., Metzger, J.M. (2017). Molecular Mechanism of Sarcomeric Cardiomyopathies. In: Garry, D., Wilson, R., Vlodaver, Z. (eds) Congestive Heart Failure and Cardiac Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-44577-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44577-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44575-5

  • Online ISBN: 978-3-319-44577-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics