Skip to main content
Log in

Modulation of intracellular calcium concentrations and T cell activation by prickly pear polyphenols

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Opuntia ficus indica(prickly pear) polyphenolic compounds (OFPC) triggered an increase in [Ca2+]i in human Jurkat T-cell lines. Furthermore, OFPC-induced rise in [Ca2+]i was significantly curtailed in calcium-free buffer (0% Ca2+) as compared to that in 100% Ca2+ medium. Preincubation of cells with tyrphostin A9, an inhibitor of Ca2+ release-activated Ca2+(CRAC) channels, significantly diminished the OFPC-induced sustained response on the increases in [Ca2+]i. Lanthanum and nifedipine, the respective inhibitors of voltage-dependent and L-type calcium channels, failed to curtail significantly the OFPC-induced calcium response. As OFPC still stimulated increases in [Ca2+]i in 0% Ca2+ medium, the role of intracellular calcium was investigated. Hence, addition of thapsigargin (TG), an inhibitor of Ca2+-ATPase of the endoplasmic reticulum (ER), during the OFPC-induced peak response exerted an additive effect, indicating that the mechanism of action of these two agents are different. Furthermore, U73122, an inhibitor of IP3 production, completely abolished increases in [Ca2+]i, induced by OFPC, suggesting that these polyphenols induce the production of IP3 that recruits calcium from ER pool. Polyphenolic compounds do act extracellularly as addition of fatty acid-free bovine serum albumin (BSA) significantly diminished the rise in [Ca2+]i evoked by the formers. OFPC also induced plasma membrane hyperpolarisation which was reversed by addition of BSA. OFPC were found to curtail the expression of IL-2 mRNA and T-cell blastogenesis. Together these results suggest that OFPC induce increases in [Ca2+]i via ER pool and opening of CRAC channels, and exert immunosuppressive effects in Jurkat T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodriguez-Felix A, Cantwell M: Developmental changes in composition and quality of prickly pear cactus cladodes (nopalitos). Plant Foods Hum Nutr 38: 83-93, 1988

    Article  PubMed  Google Scholar 

  2. Galati EM, Tripodo MM, Trovato A, Miceli N, Monforte MT: Biological effect of Opuntia ficus indica (L.) Mill. (Cactaceae) waste matter. Note I: diuretic activity. J Ethnopharmacol 79: 17-21, 2002

    Article  PubMed  Google Scholar 

  3. El Kossori RL, Villaume C, El Boustani E, Sauvaire Y, Mejean L: Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant Foods Hum Nutr 52: 263-270, 1998

    Article  PubMed  Google Scholar 

  4. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA: Antioxidant activities of Sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: Betanin and indicaxanthin. J Agric Food Chem 50: 6895-6901, 2002

    Article  PubMed  Google Scholar 

  5. Frati AC, Jimenez E, Ariza CR, Hypoglycemic effect of Opuntia ficus indica in non insulin-dependent diabetes mellitus patients. Phytother Res 4: 195-197, 1990

    Google Scholar 

  6. Hegwood DA: Human healthy discoveries with Opuntia sp. (prickly pear). Hort Sci 25: 1515-1516, 1990

    Google Scholar 

  7. Fernandez ML, Lin EC, Trejo A, McNamara DJ: Prickly pear (Opuntia sp.) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pigs. J Nutr 122: 2330-2340, 1992

    PubMed  Google Scholar 

  8. Bwititi PT, Machakaire T, Nhachi CB, Musabayane CT: Effects of Opuntia megacantha leaves extract on renal electrolyte and fluid handling in streptozotocin (STZ)-diabetic rats. Ren Fail 23: 149-158, 2001

    Article  PubMed  Google Scholar 

  9. Fernandez ML, Lin EC, Trejo A, McNamara DJ: Prickly pear (Opuntia sp.) pectin alters hepatic cholesterol metabolism without affecting cholesterol absorption in guinea pigs fed a hypercholesterolemic diet. J Nutr 124: 817-824, 1994

    PubMed  Google Scholar 

  10. Wolfram RM, Kritz H, Efthimiou Y, Stomatopoulos J, Sinzinger H: Effect of prickly pear (Opuntia robusta) on glucose-and lipid-metabolism in non-diabetics with hyperlipidemia — a pilot study. Wien Klin Wochenschr 114: 840-846, 2002

    PubMed  Google Scholar 

  11. Budinsky A, Wolfram R, Oguogho A, Efthimiou Y, Stamatopoulos Y, Sinzinger HH: Regular ingestion of Opuntia robusta lowers oxidation injury. Prostagland Leukot Essent Fatty Acids 65: 45-50, 2001

    Article  Google Scholar 

  12. Benkhalti F, Prost J, Paz E, Perez-Jimenez F, El Modafar C, El Boustani E: Effects of feeding virgin olive oil or their polyphenols on lipid of rat liver. Nutr Res 22: 1067-1075, 2002

    Article  Google Scholar 

  13. Carbo N, Costelli P, Baccino FM, Lopez-Soriano FJ, Argiles JM: Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. Biochem Biophys Res Commun 254: 739-743, 1999

    Article  PubMed  Google Scholar 

  14. Tapiero H, Tew KD, Ba GN, Mathe G: Polyphenols: Do they play a role in the prevention of human pathologies? Biomed Pharmacother 56: 200-207, 2002

    Article  PubMed  Google Scholar 

  15. Bravo L: Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333, 1998

    PubMed  Google Scholar 

  16. Wiseman SA, Balentine DA, Frei B: Antioxidants in tea. Crit Rev Food Sci Nutr 37: 705-718, 1997

    PubMed  Google Scholar 

  17. Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA: A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr 54: 87-92, 2000

    Article  PubMed  Google Scholar 

  18. Martinez J, Moreno JJ: Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem Pharmacol 59: 865-870, 2000

    Article  PubMed  Google Scholar 

  19. Ahmad N, Cheng P, Mukhtar HH: Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun 275: 328-334, 2000

    Article  PubMed  Google Scholar 

  20. Ren F, Zhang S, Mitchell SH, Butler R, Young CY: Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 19: 1924-1932, 2000

    Article  PubMed  Google Scholar 

  21. Liang YC, Lin-shiau SY, Chen CF, Lin JK: Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67: 55-65, 1997

    Article  PubMed  Google Scholar 

  22. Kennedy DO, Nishimura S, Hasuma T, Yano Y, Otani S, Matsui-Yuasa I: Involvement of protein tyrosine phosphorylation in the effect of green tea polyphenols on Ehrlich ascites tumor cells in vitro. Chem Biol Interact 110: 159-172, 1998

    Article  PubMed  Google Scholar 

  23. Cantrell DA: T cell antigen receptor signal transduction pathways. Cancer Surv 27: 165-175, 1996

    PubMed  Google Scholar 

  24. Crabtree GR: Generic signals and specific outcomes: Signaling through Ca2+, calcineurin, and NF-AT. Cell 96: 611-614, 1999

    Article  PubMed  Google Scholar 

  25. Crabtree GR: Calcium, calcincurin, and the control of transcription. J Biol Chem 276: 2313-2316, 2001

    Article  PubMed  Google Scholar 

  26. Kremer JM, Lawrence DA, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE, Sherman M: Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical and immunologic effects. Arth Rheum 33: 810-820, 1990

    Google Scholar 

  27. Bittiner SB, Tucker WF, Cartwright I, Bleehen SS: A double-blind, randomised, placebo-controlled trial of fish oil in psoriasis. Lancet 1: 378-380, 1988

    Article  PubMed  Google Scholar 

  28. Notkins AL, Lernmark AA: Autoimmune type 1 diabetes: Resolved and unresolved issues. J Clin Invest 108: 1247-1252, 2001

    Article  PubMed  Google Scholar 

  29. Bjorneboe A, Soyland E, Bjorneboe GE, Rajka G, Drevon CA: Effect of dietary supplementation with eicosapentaenoic acid in the treatment of atopic dermatitis. Br J Dermatol 117: 463-469, 1987

    PubMed  Google Scholar 

  30. Ma A, Datta M, Margosian E, Chen J, Horak I: T cells, but not B cells, are required for bowel inflammation in interleukin 2-deficient mice. J Exp Med 182: 1567-1572, 1995

    Article  PubMed  Google Scholar 

  31. Li HC, Yashiki S, Sonoda J, Lou H, Ghosh SK, Byrnes JJ, Lema C, Fujiyoshi T, Karasuyama M, Sonoda S: Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients. Jpn J Cancer Res 91: 34-40, 2000

    Google Scholar 

  32. Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (T-H1) and type 2 (T-H2) helper T cell cytokines in CD4(+) T cells. Phytother Res 16: 36-42, 2002

    Article  PubMed  Google Scholar 

  33. Rink TJ, Montecucco C, Hesketh TR, Tsien RY: Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta 595: 15-30, 1980

    PubMed  Google Scholar 

  34. Tessier C, Hichami A, Khan NA: Implication of three isoforms of PLA2 in human T-cell proliferation. FEBS Lett 520: 111-116, 2002

    Article  PubMed  Google Scholar 

  35. Marhaba R, Mary F, Pelassy C, Stanescu AT, Aussel C, Breittmayer JP: Tyrphostin A9 inhibits calcium release-dependent phosphorylations and calcium entry via calcium release-activated channel in Jurkat T cells. J Immunol 157: 1468-1473, 1996

    PubMed  Google Scholar 

  36. Tsein RW: Calcium channels in excitable cell membranes. Annu Rev Physiol 45: 341-358, 1983

    Article  PubMed  Google Scholar 

  37. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP: Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci USA 87: 2466-2470, 1990

    PubMed  Google Scholar 

  38. Zweifach A, Lewis RS: Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90: 6295-6299, 1993

    PubMed  Google Scholar 

  39. Lewis RS, Cahalan MD: Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13: 623-653, 1995

    Article  PubMed  Google Scholar 

  40. Premack BA, McDonald TV, Gardner PP: Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca(2+)-ATPase inhibitors. J Immunol 152: 5226-5240, 1994

    PubMed  Google Scholar 

  41. Martin S, Andriambeloson E, Takeda K, Andriantsitohaina RR: Red wine polyphenols increase calcium in bovine aortic endothelial cells: A basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 135: 1579-1587, 2002

    Article  PubMed  Google Scholar 

  42. Conforti L, Petrovic M, Mohammad D, Lee S, Ma Q, Barone S, Filipovich AH: Hypoxia regulates expression and activity of kv1.3 channels in T lymphocytes: A possible role in T cell proliferation. J Immunol 170: 695-702, 2003

    PubMed  Google Scholar 

  43. Putney JW JR: Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium 21: 257-261, 1997

    Article  PubMed  Google Scholar 

  44. Benoit C, Renaudon B, Salvail D, Rousseau EE: EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization. Am J Physiol Lung Cell Mol Physiol 280: L965-L973, 2001

    PubMed  Google Scholar 

  45. Donnadicu E, Bismuth G, Trautmann A: Calcium fluxes in T-lymphocytes. J Biol Chem 267: 25864-25872, 1992

    PubMed  Google Scholar 

  46. Negulescu PA, Shastri N, Cahalan MD: Intracellular calcium dependence of gene expression in single T lymphocytes. Proc Natl Acad Sci USA 91: 2873-2877, 1994

    PubMed  Google Scholar 

  47. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI: Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386: 855-858, 1997

    Article  PubMed  Google Scholar 

  48. Berry N, Ase K, Kikkawa U, Kishimoto A, Nishizuka YY: Human T cell activation by phorbol esters and diacylglycerol analogues. J Immunol 143: 1407-1413, 1989

    PubMed  Google Scholar 

  49. Sanbongi C, Suzuki N, Sakane T: Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 177: 129-136, 1997

    Article  PubMed  Google Scholar 

  50. Atluru D, Jackson TM, Atluru S: Genistein, a selective protein tyrosine kinase inhibitor, inhibits interleukin-2 and leukotriene B4 production from human mononuclear cells. Clin Immunol Immunopathol 59: 379-387, 1991

    Article  PubMed  Google Scholar 

  51. Devi MA, Das NP: In vitro effects of natural plant polyphenols on the proliferation of normal and abnormal human lymphocytes and their secretions of interleukin-2. Cancer Lett 69: 191-196, 1993

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aires, V., Adote, S., Hirchami, A. et al. Modulation of intracellular calcium concentrations and T cell activation by prickly pear polyphenols. Mol Cell Biochem 260, 103–110 (2004). https://doi.org/10.1023/B:MCBI.0000026061.57326.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026061.57326.28

Navigation