Skip to main content
Log in

The chemical mechanism of action of glucose oxidase from Aspergillus niger

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glucose oxidase from Aspergillus niger (EC 1.1.3.4) is able to catalyze the oxidation of β-D-glucose with p-benzoquinone, methyl-1,4-benzoquinone, 1,2-naphthoquinone, 1,2-naphthoquinone-4-sulfonic acid, potassium ferricyanide, phenazine methosulfate, and 2,6-dichloroindophenol. In this work, the steady-state kinetic parameters, V 1/K B , for reactions of these substrates were collected from pH 2.5–8. Further, the molecular models of the enzyme's active site were constructed for the free enzyme in the oxidized state, the complex of β-D-glucose with the oxidized enzyme, the complex of reduced enzyme with methyl-1,4-benzoquinone, the reduced enzyme plus 1,2-naphthoquinone-4-sulfonic acid, oxidized enzyme plus reduced 1,2-naphthoquinone-4-sulfonic acid (hydroquinone anion), and oxidized enzyme plus fully reduced 1,2-naphthoquinone-4-sulfonic acid.

Combining the steady-state kinetic and structural data, it was concluded that Glu412 bound to His559, in the active site of enzyme, modulates powerfully its catalytic activity by affecting all the rate constants in the reductive and the oxidative half-reaction of the catalytic cycle. His516 is the catalytic base in the oxidative and the reductive part of the catalytic cycle. It was estimated that the pK a of Glu412 (bound to His559) in the free reduced enzyme is 3.4, and the pK a of His516 in the free reduced enzyme is 6.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson QH, Swoboda BEP, Massey V: Kinetics and mechanism of action of glucose oxidase. J Biol Chem 239: 3927-3934, 1964

    PubMed  Google Scholar 

  2. Kriechbaum M, Heilmann HJ, Wientges FJ, Hahn M, Jany K-D, Gassen HG, Sharif F, Alaeddinoglu G: Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3. FEBS Lett 255: 63-66, 1989

    Article  PubMed  Google Scholar 

  3. Frederick KR, Tung J, Emerick RS, Masiarz FR, Chamberlain SH, Vasa-vada A, Rosenberg S, Chakraborty S, Schopfer LM, Massey V: Glucose oxidase from Aspergillus niger. J Biol Chem 265: 3793-3802, 1990

    PubMed  Google Scholar 

  4. Kalisz HM, Hecht HJ, Schomburg D, Schmid RD: Crystallization and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from Aspergillus niger. J Mol Biol 213: 207-209, 1990

    PubMed  Google Scholar 

  5. Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D: Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution. J Mol Biol 229: 153-172, 1993

    Article  PubMed  Google Scholar 

  6. Nakamura S, Ogura Y: Kinetic studies on the action of glucose oxidase. J Biochem (Tokyo) 52: 214-220, 1962

    Google Scholar 

  7. Swoboda BEP, Massey V: On the reaction of the glucose oxidase from Aspergillus niger with bisulfite. J Biol Chem 241: 3409-3416, 1966

    PubMed  Google Scholar 

  8. Bright HJ, Gibson QH: The oxidation of 1-deuterated glucose by glucose oxidase. J Biol Chem 242: 994-1003, 1967

    PubMed  Google Scholar 

  9. Nakamura S, Ogura Y: Action mechanism of glucose oxidase of Aspergillus niger. J Biochem (Tokyo) 63: 308-316, 1968

    Google Scholar 

  10. Bright HJ, Appleby M: The pH dependence of the individual steps in the glucose oxidase reaction. J Biol Chem 244: 3625-3634, 1969

    PubMed  Google Scholar 

  11. Weibel MK, Bright HJ: The glucose oxidase mechanism. Interpretation of the pH dependence. J Biol Chem 246: 2734-2744, 1971

    PubMed  Google Scholar 

  12. Bright HJ, Porter DJT: Flavoprotein oxidases. In: P.D. Boyer (ed). The Enzymes, 3rd edn., Vol. 12. Academic Press, New York, 1975, pp 421-505

    Google Scholar 

  13. Walpole CSJ, Wrigglesworth R: Oxido-reductase-flavoenzymes. In: M.I. Page, A. Williams (eds). Enzyme Mechanisms. Royal Society of Chemistry, London, 1987, pp 506-522

    Google Scholar 

  14. Witt S: Untersuchungen der Glucoseoxidase aus Penicillium amagasakinese auf molekularer Ebene. Ph.D. Thesis, University of Hanover, Germany, 1997

    Google Scholar 

  15. Su Q, Klinman JP: Nature of oxygen activation in glucose oxidase from Aspergillus niger. The importance of electrostatic stabilization in super-oxide formation. Biochemistry 38: 8572-8581, 1999

    Article  PubMed  Google Scholar 

  16. Roth JP, Klinman JP: Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proc Natl Acad Sci USA 100: 62-67, 2003

    Article  PubMed  Google Scholar 

  17. Leskovac V, Svirčević J, Radulović M: The oxidative part of the glucose-oxidase reaction. Int J Biochem 21: 1083-1088, 1989

    Article  PubMed  Google Scholar 

  18. Wilson R, Turner APF: Glucose oxidase: An ideal enzyme. Biosens Bioelectron 7: 165-185, 1992

    Article  Google Scholar 

  19. Bourdillone C, Denaille C, Moiroux J, Saveant J-M: New insight into the enzymatic catalysis of the oxidation of glucose by native and recombinant glucose-oxidase mediated by electrochemically generated one-electron redox cosubstrates. J Am Chem Soc 115: 2-10, 1993

    Google Scholar 

  20. Cleland WW: Statistical analysis of enzyme kinetic data. Meth Enzymol 63: 103-137, 1979

    PubMed  Google Scholar 

  21. Leskovac V: In: Comprehensive Enzyme Kinetics. Kluwer Academic/Plenum Publishers, New York, 2003

    Google Scholar 

  22. Schomburg D, Reichelt J: BRAGI: A comprehensive protein modeling program system. J Mol Graph 6: 161-165, 1988

    Article  Google Scholar 

  23. Pearlman DA, Case DA, Caldwell JC, Seibel GL, Singh UC, Weiner P, Kollman PA: AMBER 4.0. University of California, San Francisco, 1991

    Google Scholar 

  24. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell J W, Kollman PA: A second generation force field for the simulation of proteins, nucleic acids and organic mole-cules. J Am Chem Soc 117: 5179-5197, 1995

    Article  Google Scholar 

  25. Meyer M: Density functional study of isoalloxasine and C4a-hydroperoxidihydroisoalloxazine. J Mol Struct (Theochem) 417: 163-168, 1997

    Article  Google Scholar 

  26. Bayly CI, Cieplak P, Cornell WD, Kollman PA: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges — the RESP model. J Phys Chem 97: 10269-10280, 1993

    Article  Google Scholar 

  27. Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht H-J: 1.8 and 1.9 Å Resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modeling substrate complexes. Acta Cryst D55: 969-977, 1999

    Google Scholar 

  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML: Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926-935, 1983

    Article  Google Scholar 

  29. Ryckaert J-P, Ciccotti G, Berendsen HJC: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23: 327-341, 1977

    Article  Google Scholar 

  30. Voet JG, Coe J, Epstein J, Matossian V, Shipley T: Electrostatic control of enzyme reactions: effect of ionic strength on the pK a of an essential acidic group on glucose oxidase. Biochemistry 20: 7182-7185, 1981

    Article  PubMed  Google Scholar 

  31. Renard M, Fersht AR: Anomalous pH dependence of kcat/KM in enzyme reactions. Rate constants for the association of chymotrypsin with substrates. Biochemistry 23: 4713-4718, 1973

    Article  Google Scholar 

  32. Stankovich MT, Schopfer LM, Massey V: Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms. J Biol Chem 253: 4971-4979, 1978

    PubMed  Google Scholar 

  33. Yamazaki I, Ohnishi T: One electron transfer reactions in biochemical systems. Kinetic analysis of the oxidation-reduction equilibrium between quinolquinone and ferro-ferricytochrome c. Biochim Biophys Acta 112: 469-481, 1966

    Google Scholar 

  34. Meyer M, Wohlfahrt G, Knablein J, Schomburg D: Aspects of the mechanism of catalysis of glucose oxidase: A docking, molecular mechanics and quantum chemical study. J Comput Aided Mol Des 12: 425-40, 1998

    Article  PubMed  Google Scholar 

  35. Witt S, Wohlfahrt G, Schomburg D, Hecht HJ, Kalisz HM: Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of β-D-glucose. Biochem J 347: 553-559, 2000

    Article  PubMed  Google Scholar 

  36. Sanner C, Macheroux P, Ruterjans H, Muller F, Bacher A: 15N-and 13C-NMR investigations of glucose oxidase from Aspergillus niger. Eur J Biochem 196: 663-672, 1991

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlfahrt, G., Trivić, S., Zeremski, J. et al. The chemical mechanism of action of glucose oxidase from Aspergillus niger . Mol Cell Biochem 260, 69–83 (2004). https://doi.org/10.1023/B:MCBI.0000026056.75937.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026056.75937.98

Navigation