Skip to main content
Log in

Comparison of Glucose Oxidases from Penicillium Adametzii, Penicillium Funiculosum and Aspergillus Niger in the Design of Amperometric Glucose Biosensors

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The properties of amperometric glucose biosensors based on three different glucose oxidases and various redox mediators were evaluated. Glucose oxidases (GOx) from Penicillium adametzii, Penicillium funiculosum and Aspergillus niger and artificial redox mediators, such as ferrocene, ferrocenecarboxaldehyde, α-methylferrocene methanol and ferrocenecarboxylic acid, were used for modifying the graphite rod electrode and amperometrical reagent-less glucose detection. The obtained results were compared using N-methylphenazonium methyl sulphate in the solution. Taking into account the experimental kinetic parameters and the stability of the tested enzymatic electrodes, GOx from Penicillium funiculosum proved to be more suitable for glucose biosensor design in comparison with other evaluated enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ikeda, I. Katasho, M. Kamei, and M. Senda, Agric. Biol. Chem., 1984, 48, 1969.

    CAS  Google Scholar 

  2. Z. Wang, S. Liu, P. Wu, and C. Cai, Anal. Chem., 2009, 81, 1638.

    Article  CAS  PubMed  Google Scholar 

  3. C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, and S. Yao, Biosens. Bioelectron., 2008, 23, 1272.

    Article  CAS  PubMed  Google Scholar 

  4. E. V. Ivanova, V. S. Sergeeva, J. Oni, C. Kurzawa, A. D. Ryabov, and W. Schuhmann, Bioelectrochemistry, 2003, 60, 65.

    Article  CAS  PubMed  Google Scholar 

  5. R. K. Nagarale, J. M. Lee, and W. Shin, Electrochim. Acta, 2009, 54, 6508.

    Article  CAS  Google Scholar 

  6. Y. L. Yao and K. K. Shiu, Electrochim. Acta, 2007, 53, 278.

    Article  CAS  Google Scholar 

  7. B. Li, D. Lan, and Z. Zhang, Anal. Biochem., 2008, 374, 64.

    Article  CAS  PubMed  Google Scholar 

  8. J. Kumar and S. F. D’Souza, Biosens. Bioelectron., 2009, 24, 1792.

    Article  CAS  PubMed  Google Scholar 

  9. K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu, and W. Xing, Electrochim. Acta, 2009, 54, 4626.

    Article  CAS  Google Scholar 

  10. P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, and C. Cai, Electrochim. Acta, 2010, 55, 8606.

    Article  CAS  Google Scholar 

  11. P. Norouzi, F. Faridbod, B. Larijani, and M. R. Ganjali, Int. J. Electrochem. Sci., 2010, 5, 1213.

    Article  CAS  Google Scholar 

  12. N. German, A. Ramanaviciene, J. Voronovic, and A. Ramanavicius, Microchim. Acta, 2010, 168, 221.

    Article  CAS  Google Scholar 

  13. L. Bahshi, M. Frasconi, R. Tel-Vered, O. Yehezkeli, and I. Willner, Anal. Chem., 2008, 80, 8253.

    Article  CAS  PubMed  Google Scholar 

  14. B. Y. Wu, S. H. Hou, M. Yu, X. Qin, S. Li, and Q. Chen, Mater. Sci. Eng., C, 2009, 29, 346.

    Article  Google Scholar 

  15. C. L. Fu, W. S. Yang, X. Chen, and D. G. Evans, Electrochem. Commun., 2009, 11, 997.

    Article  CAS  Google Scholar 

  16. M. Chen, W. Zhang, R. Jiang, and G. Diao, Anal. Chim. Acta, 2011, 687, 177.

    Article  CAS  PubMed  Google Scholar 

  17. F. Garay, G. Kisiel, A. Fang, and E. Lindner, Anal. Bioanal. Chem., 2010, 397, 1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Wilson and A. P. F. Turner, Biosens. Bioelectron., 1992, 7, 165.

    Article  CAS  Google Scholar 

  19. J. Wang, Chem. Rev., 2008, 108, 814.

    Article  CAS  PubMed  Google Scholar 

  20. V. Leskovac, S. Trivić, G. Wohlfahrt, J. Kandrač, and D. Peričin, Int. J. Biochem. Cell. Biol., 2005, 37, 731.

    Article  CAS  PubMed  Google Scholar 

  21. R. V. Mikhailova, L. A. Zhukovskaya, and A. G. Lobanok, Appl. Biochem. Microbiol., 2002, 43, 207.

    Article  Google Scholar 

  22. R. V. Mikhailova, T. V. Semashko, and A. G. Lobanok, Appl. Biochem. Microbiol., 2002, 38, 236.

    Article  CAS  Google Scholar 

  23. A. N. Eryomin, M. V. Makarenko, L. A. Zhukovskaya, and R. V. Mikhailova, Appl. Biochem. Microbiol., 2006, 42, 304.

    Article  CAS  Google Scholar 

  24. A. Ciucu and C. Patroescu, Anal. Lett., 1984, 17, 1417.

    Article  CAS  Google Scholar 

  25. J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, and F. S. Sheu, Electrochem. Commun., 2004, 6, 66.

    Article  CAS  Google Scholar 

  26. L. Zhu, Y. Li, F. Tian, B. Xu, and G. Zhu, Sens. Actuators, B, 2002, 84, 265.

    Article  CAS  Google Scholar 

  27. K. F. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. R. Van Duyne, J. Am. Chem. Soc., 2003, 125, 588.

    Article  CAS  PubMed  Google Scholar 

  28. C. Fernandez-Sanchez, T. Tzanov, G. M. Gubitz, and A. Cavaco-Paulo, Bioelectrochemistry, 2002, 58, 149.

    Article  CAS  PubMed  Google Scholar 

  29. T. Semashko, R. Mikhailova, A. Ramanaviciene, and A. Ramanavicius, Anal. Biochem. Biotechnol., 2013, 171, 1739.

    Article  CAS  Google Scholar 

  30. Y. Guo, F. Lu, H. Zhao, Y. Tang, and Z. Lu, Appl. Microbiol. Biotechnol., 2010, 162, 498.

    CAS  Google Scholar 

  31. D. G. Hatzinikolaou, O. C. Hansen, B. J. Macris, A. Tingey, D. Kekos, P. Goodenough, and P. Stougaard, Appl. Microbiol. Biotechnol., 1996, 46, 371.

    CAS  PubMed  Google Scholar 

  32. B. E. P. Swoboda and V. Massey, J. Biol. Chem., 1965, 240, 2209.

    Article  CAS  PubMed  Google Scholar 

  33. M. V. Sukhacheva, M. E. Davydova, and A. I. Netrusov, Appl. Biochem. Microbiol., 2004, 40, 25.

    Article  CAS  Google Scholar 

  34. D. Rando, G. W. Kohring, and F. Giffhorn, Appl. Microbiol. Biotechnol., 1997, 48, 34.

    Article  CAS  Google Scholar 

  35. B. Wang, B. Li, Q. Deng, and S. Dong, Anal. Chem., 1998, 70, 3170.

    Article  CAS  PubMed  Google Scholar 

  36. J. Yu, D. Yu, T. Zhao, and B. Zeng, Talanta, 2008, 74, 1586.

    Article  CAS  PubMed  Google Scholar 

  37. B. Y. Wu, S. H. Hou, F. Yin, Z. X. Zhao, Y. Y. Wang, X. S. Wang, and Q. Chen, Biosens. Bioelectron., 2007, 22, 2854.

    Article  CAS  PubMed  Google Scholar 

  38. X. Chen, J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie, and S. Yao, Talanta, 2008, 76, 763.

    Article  CAS  PubMed  Google Scholar 

  39. X. Liu, L. Shi, W. Niu, H. Li, and G. Xu, Biosens. Bioelectron., 2008, 23, 1887.

    Article  CAS  PubMed  Google Scholar 

  40. M. J. Green and H. A. Hill, J. Chem. Soc., Faraday Trans., 1986, 82, 1237.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almira Ramanaviciene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanavicius, A., Voronovic, J., Semashko, T. et al. Comparison of Glucose Oxidases from Penicillium Adametzii, Penicillium Funiculosum and Aspergillus Niger in the Design of Amperometric Glucose Biosensors. ANAL. SCI. 30, 1143–1149 (2014). https://doi.org/10.2116/analsci.30.1143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.1143

Keywords

Navigation