Skip to main content
Log in

Restoration of impaired p38 activation by insulin in insulin resistant skeletal muscle cells treated with thiazolidinediones

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have previously reported that thiazolidinediones (TZDs) are able to restore the tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1, activation of phosphatidyl inositol 3-kinase and glucose uptake in insulin resistant skeletal muscle cells [21]. In this study, we investigated the effects of insulin stimulation and TZDs on the role of mitogen-activated protein kinase (MAPK) in insulin resistant skeletal muscle cells. All the three MAPKs [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK] were activated by insulin in the sensitive skeletal muscle cells. In contrast, activation of p38 MAPK was impaired in insulin resistant cells, where as ERK and JNK were activated by insulin. Treatment with TZDs resulted in the restoration of p38 MAPK activity in insulin resistant cells. The treatment of cells with p38 MAPK inhibitor, SB203580, blocked the insulin stimulated glucose uptake in sensitive as well as resistant cells and it also prevented the activation of p38 by insulin. These results suggest the potential involvement of p38 as well as the mechanistic role of TZDs in insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis TS, Shapiro PS, Ahn NG: Signal transduction through MAP kinase cascades. Adv Cancer Res 74: 49-139, 1998

    PubMed  Google Scholar 

  2. Ludwig S, Hoffmeyer A, Goebeler M, Kilian K, Hafner H, Neufeld B, Han J, Rapp UR: The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK kinase 6/p38-dependent pathway. J Biol Chem 273: 1917-1922, 1998

    Article  PubMed  Google Scholar 

  3. Ishrath A, Kumar N, Dey CS: Differential activation of ERK and JNK by arsenite in mouse muscle cells. Comp Biochem Physiol 132C: 375-384, 2002

    Google Scholar 

  4. Recio JA, Merlino G: Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene 21: 1000-1008, 2002

    Article  PubMed  Google Scholar 

  5. Zentrich E, Han SY, Pessoa-Brandao L, Butterfield L, Heasley LE: Collaboration of JNKs and ERKs in nerve growth factor regulation of the neurofilament light chain promoter in PC12 cells. J Biol Chem 277: 4110-4118, 2002

    Article  PubMed  Google Scholar 

  6. Guo JH, Wang H, Malbon CC: Conditional, tissue-specific expression of Q205L Gαi2 in vivo mimics insulin activation of c-Jun N-terminal kinase and p38 kinase. J Biol Chem 273: 16487-16493, 1998

    Article  PubMed  Google Scholar 

  7. Somwar R, Perreault M, Kapur S, Taha C, Sweenet G, Ramlal T, Kim DY, Keen J, Cote CH, Klip A, Marette A: Activation of p38 mitogen-activated protein kinase α and β by insulin and contraction in rat skeletal muscle. Diabetes 49: 1794-1800, 2000

    PubMed  Google Scholar 

  8. Farese RV: Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med 226: 283-295, 2001

    Google Scholar 

  9. Cefalu WT: Insulin resistance: Cellular and clinical concepts. Exp Biol Med 226: 13-26, 2001

    Google Scholar 

  10. Somwar R, Kim DY, Sweeney G, uang C, Niu W, Lador C, Ramlal T, Klip A: GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: Potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J 359: 639-649, 2001

    Article  PubMed  Google Scholar 

  11. Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, Klip A: The antihyperglycemic drug α-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation. Diabetes 50: 1464-1471, 2001

    PubMed  Google Scholar 

  12. Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A: An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem 274: 10071-10078, 1999

    Article  PubMed  Google Scholar 

  13. Clancy BM, Harrison SA, Buxton JM, Czech MP: Protein synthesis inhibitors activate glucose transport without increasing plasma membrane glucose transporters in 3T3-L1 adipocytes. J Biol Chem 266: 10122-10130, 1991

    PubMed  Google Scholar 

  14. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ: Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle. J Clin Invest 105: 311-320, 2000

    PubMed  Google Scholar 

  15. Aguirre V, Uchida T, Yenush L, Davis R, White MF: The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275: 9047-9054, 2000

    Article  PubMed  Google Scholar 

  16. Huang C, Somwar R, Patel N, Niu W, Torok D, Klip A: Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 actiivty. Diabetes 51: 2090-2098, 2002

    PubMed  Google Scholar 

  17. Olefsky JM: Treatment of insulin resistance with peroxisome proliferator-activated receptor γ agonists. J Clin Invest 106: 467-472, 2000

    PubMed  Google Scholar 

  18. Arakawa K, Ishihara T, Aoto M, Inamasu M, Saito A, Ikezawa K: Actions of novel antidiabetic thiazolidinediones, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol 125: 429-436, 1998

    Article  PubMed  Google Scholar 

  19. El-Kebbi IM, Roser S, Pollet RJ: Regulation of glucose transport by pioglitazone in cultured muscle cells. Metabolism 43: 953-958, 1994

    Article  PubMed  Google Scholar 

  20. Ciaraldi TP, Huber-Knudsen K, Hickman M, Olefsky JM: Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism 44: 976-982, 1995

    Article  PubMed  Google Scholar 

  21. Kumar N, Dey CS: Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal muscle cells. Biochem Pharmacol 65: 249-257, 2003

    Article  PubMed  Google Scholar 

  22. Tsiani E, Ramlal T, Leiter LA, Klip A, Fantus IG: Stimulation of glucose uptake and increased plasma membrane content of glucose transporters in L6 skeletal muscle cells by sulfonylureas gliclazide and glyburide. Endocrinology 136: 2505-2512, 1995

    Article  PubMed  Google Scholar 

  23. Ricort JM, Tanti JF, Obberghen EV, Le Marchand-Brustel Y: Alterations in insulin signaling pathway induced by prolonged insulin treatment of 3T3-L1 adipocytes. Diabetologia 38: 1148-1156, 1995

    PubMed  Google Scholar 

  24. Chang PY, Le Marchand-Brustel Y, Cheatham LA, Moller DE: Insulin stimulation of mitogen-activated protein kinase, p90rsk, and p70 S6 kinase in skeletal muscle of normal and insulin-resistant mice. Implications for the regulation of glycogen synthase. J Biol Chem 270: 29928-29935, 1995

    Article  PubMed  Google Scholar 

  25. Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE: Tumor necrosis factor α-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK 1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14: 1557-1569, 2000

    Article  PubMed  Google Scholar 

  26. Jain RG, Meredith MJ, Pekala PH: Tumor necrosis factor-α mediated activation of signal transduction cascades and transcription factors in 3T3-L1 adipocytes. Adv Enzyme Regul 38: 333-347, 1998

    Article  PubMed  Google Scholar 

  27. Lennon AM, Ramauge M, Dessouroux A, Pierre M: MAP kinase cascades are activated in astrocytes and preadipocytes by dPGJ2 and the thiazolidinedione ciglitazone through PPAR γ independent mechanisms involving ROS. J Biol Chem 277: 29681-29685, 2002

    Article  PubMed  Google Scholar 

  28. Napoli R, Gibson L, Hirshman MF, Boppart MD, Dufresne SD, Horton ES, Goodyear LJ: Epinephrine and insulin stimulate different mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Diabetes 47: 1549-1554, 1998

    PubMed  Google Scholar 

  29. Kayali AG, Austin DA, Webster NJG. Stimulation of MAPK cascades by insulin and osmotic shock. Diabetes 49: 1783-1793, 2000

    PubMed  Google Scholar 

  30. Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, Fukushima Y, Kikuchi M, Oka Y, Asano T: MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem 276: 19800-19806, 2001

    Article  PubMed  Google Scholar 

  31. Moyers JS, Bilan PJ, Reynet C, Kahn CR: Overexpression of rad inhibits glucose uptake in cultured muscle and fat cells. J Biol Chem 271: 23111-23116, 1996

    Article  PubMed  Google Scholar 

  32. Palmer RM, Thompson MG, Knott RM, Campbell GP, Thom A, Morrison KS: Insulin and insulin-like growth factor-I responsiveness and signalling mechanisms in C2C12 satellite cells: Effect of differentiation and fusion. Biochim Biophys Acta 1355: 167-176, 1997

    Article  PubMed  Google Scholar 

  33. Sarabia V, Lam L, Burdett E, Leiter LA, Klip A. Glucose transport in human skeletal muscle cells in culture: stimulation by insulin and metformin. J Clin Invest 90: 1386-1395, 1992

    PubMed  Google Scholar 

  34. Lawson MA, Purslow PP: Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific. Cells Tissues Organs 167: 130-137, 2000

    Article  PubMed  Google Scholar 

  35. Pinset C, Gros F, Whalen R: Proliferation and differentiation of a myogenic line in synthetic media. CR Sean Acad Sci 295: 727-732, 1982

    Google Scholar 

  36. Conejo R, Lorenzo M: Insulin signaling leading to proliferation, survival, and membrane ruffling in C2C12 myoblasts. J Cell Physiol 187: 96-108, 2001

    Article  PubMed  Google Scholar 

  37. Goto S, Miyazaki K, Funabiki T, Yasumitsu H: Serum-free culture conditions for the analysis of secretory proteinases during myogenic differentiation of mouse C2C12 myoblasts. Anal Biochem 272: 135-142, 1999

    Article  PubMed  Google Scholar 

  38. Cabrero À, Alegret M, Sánchez RM, Adzet T, Laguna JC, Manuel V: Down-regulation of uncoupling protein-3 and-2 by thiazolidinediones in C2C12 myotubes. FEBS Lett 484: 37-42, 2000

    Article  PubMed  Google Scholar 

  39. Nagase I, Yoshida S, Canas X, I Yukiko, Kimura K, Yoshida T, Saito M: Up-regulation of uncoupling protein 3 by thyroid hormone, peroxisome proliferator-activated receptor ligands and 9-cis retinoic acid in L6 myotubes. FEBS Lett 461

  40. Yonemitsu S, Nishimura H, Shintani M, Inoue R, Yamamoto Y, Masuzaki H, Ogawa Y, Hosoda K, Inoue G, Hayashi T, Nakao K: Troglitazone induces GLUT 4 4 translocation in L6 myotubes. Diabetes 50: 1093-1101, 2001

    PubMed  Google Scholar 

  41. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420-7426, 1995

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Dey, C.S. Restoration of impaired p38 activation by insulin in insulin resistant skeletal muscle cells treated with thiazolidinediones. Mol Cell Biochem 260, 55–64 (2004). https://doi.org/10.1023/B:MCBI.0000026054.60072.48

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000026054.60072.48

Navigation