Skip to main content
Log in

Effect of angiotensin II type 2 receptor blockade on mitogen activated protein kinases during myocardial ischemia-reperfusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinases (MAPKs) have been implicated during ischemia-reperfusion (IR) and angiotensin II (AngII) type 2 receptor (AT2R) blockade has been shown to induce cardioprotection involving protein kinase Cε-(PKCε) signaling after IR. We examined whether the 3 major MAPKs, p38, c-Jun NH2-terminal kinase (JNK-1 and JNK-2), and extracellular signal regulated kinases (ERK-1 and ERK-2) are activated after IR and whether treatment with the AT2R antagonist PD123,319 (PD) alters their expression. Isolated rat hearts were randomized to control (aerobic perfusion, 80 min), IR (no drug; 50 min of perfusion, 30 min global ischemia and 30 min reperfusion; working mode), and IR + PD (0.3 μmol/l) and left ventricular (LV) work was measured. We measured LV tissue content of p38, p-p38, p-JNK-1 (54 kDa), p-JNK-2 (46 kDa), p-ERK-1 (44 kDa), p-ERK-2 (42 kDa) and PKCε proteins by immunoblotting and cGMP by enzyme immunoassay. IR resulted in significant LV dysfunction, increase in p-p38 and p-JNK-1/-2, no change in p-ERK-1/-2 or PKCε, and decrease in cGMP. PD improved LV recovery after IR, induced a slight increase in p-p38 (p < 0.01 vs. control), normalized p-JNK-1, did not change p-ERK-1/-2, and increased PKCε and cGMP. The overall results suggest that p38 and JNK might play a significant role in acute IR injury and the cardioprotective effect of AT2R blockade independent of ERK. The activation of p38 and JNKs during IR may be linked, in part, to AT2R stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K, Takeda T: Cardioprotective effect of the angiotensin II type 1 receptor antagonist TCV-116 on ischemia-reperfusion injury. Am Heart J 128: 1–6, 1994

    Google Scholar 

  2. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD: Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45: 205–251, 1993

    Google Scholar 

  3. Matsubara H: Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83: 1182–1191, 1998

    Google Scholar 

  4. Horiuchi M, Akishita M, Dzau VJ: Recent progress in angiotensin type 2 receptor research in the cardiovascular system. Hypertension 33: 613–621, 1999

    Google Scholar 

  5. Yamada T, Horiuchi M, Dzau VJ: Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93: 156–160, 1996

    Google Scholar 

  6. Ford WR, Clanachan AS, Jugdutt BI: Opposite effects of angiotensin AT1 and AT2 receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94: 3087–3089, 1996

    Google Scholar 

  7. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M: Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95: 46–54, 1995

    Google Scholar 

  8. Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB: AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95: 1201–1206, 1997

    Google Scholar 

  9. Xu Y. Kumar D, Dyck J, Ford WR, Clanachan AS, Lopaschuk GD, Jugdutt BI: AT1 and AT2 receptor expression and blockade after acute ischemia-reperfusion in isolated working rat hearts. Am J Physiol 282: H1206–H1215, 2002

    Google Scholar 

  10. Xu Y, Clanachan AS, Jugdutt BI: Enhanced expression of angiotensin II type 2 receptor, inositol 1,4, 5-trisphosphate receptor, and protein kinase Cε during cardioprotection induced by angiotensin II type 2 receptor blockade. Hypertension 36: 506–510, 2000

    Google Scholar 

  11. Gohlke P, Pees C, Unger T: AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension 31: 349–355, 1998

    Google Scholar 

  12. Jalowy A, Schulz R, Dorge H, Behrends M, Heush G: Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2 receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32: 1787–1796, 1998

    Google Scholar 

  13. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA: Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99: 1926–1935, 1997

    Google Scholar 

  14. Xu Y, Menon V, Jugdutt BI: Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-ε in acutely reperfused myocardial infarction. Effect of UP269-6 and losartan on AT1 and AT2 receptor expression, and IP3 receptor and PKCε proteins. J Renin Angiotensin Aldosterone Syst 1: 184–195, 2000

    Google Scholar 

  15. Moudgil R, Menon V, Xu Y, Musat-Marcu S, Kumar D, Jugdutt BI: Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in working rat hearts. J Hypertens 19: 1121–1129, 2001

    Google Scholar 

  16. Moudgil R, Musat-Marcu S, Xu Y, Kumar D, Jugdutt BI: Increased AT2R protein expression but not increased apoptosis during cardioprotection induced by AT1R blockade. Can J Cardiol 18: 1107–1116, 2002

    Google Scholar 

  17. Gutkind JS: The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273: 1839–1842, 1998

    Google Scholar 

  18. Sugden PH, Clerk A: Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal 9: 337–351, 1997

    Google Scholar 

  19. Hunyady L, Balla T, Catt KJ: The ligand binding site of the angiotensin AT1 receptor. Trends Pharmacol Sci 17: 135–140, 1996

    Google Scholar 

  20. Jugdutt BI, Balghith M: Enhanced regional AT2 receptor and PKCε expression during cardioprotection induced by AT1 receptor blockade after reperfused myocardial infarction. J Renin-Angiotensin Aldosterone Syst 2: 134–140, 2001

    Google Scholar 

  21. Cobb MH, Goldsmith EJ: How MAP kinases are regulated. J Biol Chem 270: 14843–14846, 1995

    Google Scholar 

  22. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK: p38 Mitogen-activated protein kinase is a critical component of the redoxsensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273: 15022–15029, 1998

    Google Scholar 

  23. Hayashida W, Kihara Y, Yasaka A, Inagaki K, Iwanaga Y, Sasayama S: Stage-specific differential activation of mitogen-activated protein kinases in hypertrophied and failing rat hearts. J Mol Cell Cardiol 33: 733–744, 2001

    Google Scholar 

  24. Schmitz U, Ishida T, Ishida M, Surapisitchat J, Hasham MI, Pelech S, Berk BC: Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: Role in activation of JNK. Circ Res 82: 1272–1278, 1998

    Google Scholar 

  25. Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y: Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80: 139–146, 1997

    Google Scholar 

  26. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331, 1995

    Google Scholar 

  27. Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268: 14553–14556, 1993

    Google Scholar 

  28. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y: Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100: 1813–1821, 1997

    Google Scholar 

  29. Wang X, Martindale JL, Liu Y, Holbrook NJ: The cellular response to oxidative stress: Influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333: 291–300, 1998

    Google Scholar 

  30. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH: Inhibition of extracellular signalregulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86: 692–699, 2000

    Google Scholar 

  31. Sugden PH, Clerk A: Stress-responsive mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83: 345–352, 1998

    Google Scholar 

  32. Weinbrenner C, Liu GS, Cohen MV, Downey JM: Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 29: 2383–2391, 1997

    Google Scholar 

  33. Zhao TC, Hines DS, Kukreja RC: Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol 280: H1278–H1285, 2001

    Google Scholar 

  34. Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamada J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M: Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 88: 175–180, 2001

    Google Scholar 

  35. Nakano A, Baines CP, Kim SO, Pelech SL, Downey JM, Cohen MV, Critz SD: Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: Evidence for involvement of p38 MAPK. Circ Res 86: 144–151, 2000

    Google Scholar 

  36. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH: Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79: 162–173, 1996

    Google Scholar 

  37. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161–2168, 1998

    Google Scholar 

  38. Clerk A, Michael A, Sugden PH: Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy? J Cell Biol 142: 523–535, 1998

    Google Scholar 

  39. Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R: Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: A signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84: 587–604, 1999

    Google Scholar 

  40. Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH: Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 99: 22–25, 1999

    Google Scholar 

  41. Jugdutt BI: Role of AT1 receptor blockade in reperfused myocardial infarction. In: N. Dhalla (ed). Signal Transduction and Cardiac Hypertrophy. Kluwer Academic Publishers, Boston, 2002, pp 221–236

    Google Scholar 

  42. Kyriakis JM, Avruch J: Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J Biol Chem 271: 24313–24316, 1996

    Google Scholar 

  43. Paul A, Wilson S, Belham CM, Robinson CJ, Scott PH, Gould GW, Plevin R: Stress-activated protein kinases: Activation, regulation and function. Cell Signal 9: 403–410, 1997

    Google Scholar 

  44. Sadoshima J, Qiu Z, Morgan JP, Izumo S: Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res 76: 1–15, 1995

    Google Scholar 

  45. Hayashida W, Horiuchi M, Dzau VJ: Intracellular third loop domain of angiotensin II type-2 receptor. Role in mediating signal transduction and cellular function. J Biol Chem 271: 21985–21992, 1996

    Google Scholar 

  46. Izumi Y, Kim S, Zhan Y, Namba M, Yasumoto H, Iwao H: Important role of angiotensin II-mediated c-Jun NH(2)-terminal kinase activation in cardiac hypertrophy in hypertensive rats. Hypertension 36: 511–516, 2000

    Google Scholar 

  47. Thomas WG, Thekkumkara TJ, Baker KM: Cardiac effects of AII. AT1A receptor signaling, desensitization, and internalization. Adv Exp Med Biol 396: 59–69, 1996

    Google Scholar 

  48. Thorburn J, Frost JA, Thorburn A: Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J Cell Biol 126: 1565–1572, 1994

    Google Scholar 

  49. Post GR, Goldstein D, Thuerauf DJ, Glembotski CC, Brown JH: Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 271: 8452–8457, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Menon, V., Ford, W.R. et al. Effect of angiotensin II type 2 receptor blockade on mitogen activated protein kinases during myocardial ischemia-reperfusion. Mol Cell Biochem 258, 211–218 (2004). https://doi.org/10.1023/B:MCBI.0000012857.06723.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000012857.06723.81

Navigation