Skip to main content
Log in

Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Stress resistance is essential for survival. The mechanisms of molecule stabilization during stress are of interest for biotechnology, where many enzymes and other biomolecules are increasingly used at high temperatures and/or salt concentrations. Diverse organisms, exhibit rapid synthesis and accumulation of the disaccharide trehalose in response to stress. Trehalose is also rapidly hydrolyzed as soon as stress ends. In isolated enzymes, trehalose stabilizes both, structure and activity. In contrast, at optimal assay conditions, trehalose inhibits enzyme activity. A general mechanism underlying the trehalose effects observed at all temperatures probably is the trehalose-mediated increase in solution viscosity that leads to protein domain motion inhibition. This may be analyzed using Kramer's theory. The role of viscosity in the effects of trehalose is analyzed in examples from the literature and in studies on the plasma membrane H+-ATPase from Kluyveromyces lactis. In the cell, it may be proposed that the large concentration of trehalose reached during stress stabilizes structures through viscosity. However, once stress ends trehalose has to be rapidly hydrolyzed in order to avoid the viscosity-mediated inhibition of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crowe JH, Crowe LM, Mouradian R: Stabilization of biological membranes at low water activities. Cryobiology 20: 346–356, 1983

    Article  PubMed  Google Scholar 

  2. Singer MA, Lindquist S: Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1: 639–648, 1998

    Article  PubMed  Google Scholar 

  3. Sampedro JG, Cortés P, Muñoz-Clares RA, Fernández A, Uribe S: Thermal inactivation of the plasma membrane H+-ATPase from Kluyveromyces lactis. Protection by trehalose. Biochim Biophys Acta 1544: 64–73, 2001

    PubMed  Google Scholar 

  4. Wera S, De Schrijver E, Geyskens I, Nwaka S, Thevelein JM: Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J 343: 621–626, 1999

    Article  PubMed  Google Scholar 

  5. Singer MA, Lindquist S: Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose. Trends Biotechnol 16: 460–468, 1998b

    Article  PubMed  Google Scholar 

  6. Sampedro JG, Muñoz-Clares RA, Uribe S: Trehalose mediated inhibition of the plasma membrane H+-ATPase from Kluyveromyces lactis. Viscosity and temperature dependence. J Bacteriol 184: 4384–4391, 2002

    Article  PubMed  Google Scholar 

  7. Hagen SJ, Hofrichter J, Eaton WA: Protein reaction kinetics in a room-temperature glass. Science 269: 959–962, 1995

    PubMed  Google Scholar 

  8. Butler SL, Falke JJ: Effects of protein stabilizing agents on thermal backbone motions: A disulfide trapping study. Biochemistry 35: 10595–10600, 1996

    Article  PubMed  Google Scholar 

  9. Jacob M, Geeves M, Holtermann G, Schmid FX: Diffusional barrier crossing in a two-state protein folding reaction. Nat Struct Biol 6: 923–926, 1999

    PubMed  Google Scholar 

  10. Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM: Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273: 33311–33319, 1998

    Article  PubMed  Google Scholar 

  11. Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A: Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209: 951–959, 1992

    Article  PubMed  Google Scholar 

  12. De Virgilio C, Bürckert N, Bell W, Jenö P, Boller T, Wiemken A: Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212: 315–323, 1993

    Article  PubMed  Google Scholar 

  13. Vuorio OE, Kalkkinen N, Londesborough J: Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216: 849–861, 1993

    Article  PubMed  Google Scholar 

  14. Thevelein JM, Hohmann S: Trehalose synthase: Guard to the gate of glycolysis in yeast? Trends Biochem Sci 20: 3–10, 1995

    Article  PubMed  Google Scholar 

  15. Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF: Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154: 165–171, 1997

    Article  PubMed  Google Scholar 

  16. Amaral FC, Van Dijck P, Nicoli JR, Thevelein JM: Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol 167: 202–208, 1997

    Article  PubMed  Google Scholar 

  17. Uno I, Matsumoto K, Adachi K, Ishikawa T: Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258: 10867–10872, 1983

    PubMed  Google Scholar 

  18. Nwaka S, Holzer H: Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 58: 197–237, 1998

    PubMed  Google Scholar 

  19. Londesborough J, Varimo K: Characterization of two trehalases in baker's yeast. Biochem J 219: 511–518, 1984

    PubMed  Google Scholar 

  20. Nwaka S, Mechler B, Holzer H: Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett 386: 235–238, 1996

    Article  PubMed  Google Scholar 

  21. Winderickx J, de Windle JH, Crauwels M, Hino A, Hohmann S, Van Dijck P, Thevelein JM: Regulation of genes enconding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: Novel variations of STRE-mediated transcription control? Mol Gen Genet 252: 470–482, 1996

    PubMed  Google Scholar 

  22. Kopp M, Muller H, Holzer H: Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268: 4766–4774, 1993

    PubMed  Google Scholar 

  23. Zahringer H, Thevelein JM, Nwaka S: Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35: 397–406, 2000

    Article  PubMed  Google Scholar 

  24. Francois J, Neves MJ, Hers HG: The control of trehalose biosynthesis in Saccharomyces cerevisiae: Evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7: 575–587, 1991

    Article  PubMed  Google Scholar 

  25. Wiemken A: Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58: 209–217, 1990

    Article  PubMed  Google Scholar 

  26. Behm CA: The role of trehalose in the physiology of nematodes. Int J Parasitol 27: 215–229, 1997

    Article  PubMed  Google Scholar 

  27. Elbein AD: The metabolism of alpha,alpha-trehalose. Adv Carbohydr Chem Biochem 30: 227–256, 1974

    PubMed  Google Scholar 

  28. Thevelein JM: Regulation of trehalose mobilization in fungi. Microbiol Rev 48: 42–59, 1984

    PubMed  Google Scholar 

  29. van Laere AJ, Carlier AR, van Asschie JA: Effect of 5-fluorouracil and cycloheximide on the early development of Phycomyces blakesleeanus spores and the activity of N-acetylglucosamine synthesizing enzymes. Arch Microbiol 108: 113–116, 1976

    Article  PubMed  Google Scholar 

  30. Parrou JL, Teste MA, Francois J: Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: Genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143: 1891–1900, 1997

    PubMed  Google Scholar 

  31. Hottiger T, Boller T, Wiemken A: Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220: 113–115, 1987

    Article  PubMed  Google Scholar 

  32. Meikle AJ, Reed RH, Gadd GM: Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J Gen Microbiol 134: 3049–3060, 1988

    PubMed  Google Scholar 

  33. Regev R, Peri I, Gilboa H, Avi-Dor Y: 13C NMR study of the interrelation between synthesis and uptake of compatible solutes in two moderately halophilic eubacteria. Bacterium Ba1 and Vibrio costicola. Arch Biochem Biophys 278: 106–112, 1990

    Article  PubMed  Google Scholar 

  34. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT: Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130: 437–460, 2001

    Article  PubMed  Google Scholar 

  35. Nyyssola A, Leisola M: Actinopolyspora halophila has two separate pathways for betaine synthesis. Arch Microbiol 176: 294–300, 2001

    Article  PubMed  Google Scholar 

  36. Lippert K, Galinski EA, Truper HG: Biosynthesis and function of trehalose in Ectothiorhodospira halochloris. Antonie Van Leeuwenhoek 63: 85–91, 1993

    Article  PubMed  Google Scholar 

  37. Dardanelli MS, Gonzalez PS, Bueno MA, Ghittoni NE: Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media. J Basic Microbiol 40: 149–156, 2000

    Article  PubMed  Google Scholar 

  38. Crowe JH, Hoekstra FA, Crowe LM: Anhydrobiosis. Annu Rev Physiol 54: 579–599, 1992

    Article  PubMed  Google Scholar 

  39. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F: The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43: 89–105, 2001

    Article  PubMed  Google Scholar 

  40. Courtenay ES, Capp MW, Anderson CF, Record MT Jr: Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of ‘osmotic stress’ experiments in vitro. Biochemistry 39: 4455–4471, 2000

    Article  PubMed  Google Scholar 

  41. Gekko K, Timasheff SN: Mechanism of protein stabilization by glycerol: Preferential hydration in glycerol-water mixtures. Biochemistry 20: 4667–4676, 1981

    Article  PubMed  Google Scholar 

  42. Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A: The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219: 187–193, 1994

    Article  PubMed  Google Scholar 

  43. Sola-Penna M, Meyer-Fernandes JR: Protective role of trehalose in thermal denaturation of yeast pyrophosphatase. Z Naturforsch 49: 327–330, 1994

    Google Scholar 

  44. Colaco C, Sen S, Thangavelu M, Pinder S, Roser B: Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology. Biotechnology 10: 1007–1011, 1992

    Article  PubMed  Google Scholar 

  45. Gross C, Watson K: Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae. Can J Microbiol 44: 341–350, 1998

    Article  PubMed  Google Scholar 

  46. Estruch F: Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24: 469–486, 2000

    Article  PubMed  Google Scholar 

  47. Magazù S, Maisano G, Migliardo P, Middendorf HD, Villari V: Hydration and transport properties of aqueous solutions of α-α-trehalose. J Chem Phys 109: 1170–1174, 1998

    Article  Google Scholar 

  48. Rampp M, Buttersack C, Ludemann HD: c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions. Carbohydr Res 328: 561–572, 2000

    Article  PubMed  Google Scholar 

  49. Frauenfelder H, Fenimore PW, McMahon BH: Hydration, slaving and protein function. Biophys Chem 98: 35–48, 2002

    Article  PubMed  Google Scholar 

  50. van Mierlo CP, Steensma E: Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: The flavodoxin story. J Biotechnol 79: 281–298, 2000

    Article  PubMed  Google Scholar 

  51. Ptitsyn OB: Protein folding: Nucleation and compact intermediates. Biochemistry (Mosc) 63: 367–373, 1998

    PubMed  Google Scholar 

  52. Kramers HA: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7: 284–304, 1940

    Article  Google Scholar 

  53. Jacob M, Schmid FX: Protein folding as a diffusional process. Biochemistry 38: 13773–13779, 1999

    Article  PubMed  Google Scholar 

  54. Kanchisa MI, Tsong TY: Mechanism of the multiphasic kinetics of the folding and unfolding of globular proteins. J Mol Biol 124: 177–194, 1978

    Article  PubMed  Google Scholar 

  55. Chrunyk BA, Matthews CR: Role of diffusion in the folding of the alpha subunit of tryptophan synthase from Escherichia coli. Biochemistry 29: 2149–2154, 1990

    Article  PubMed  Google Scholar 

  56. Vaucheret H, Signon L, Le Bras G, Garel JR: Mechanism of renaturation of a large protein, aspartokinase-homoserine dehydrogenase. Biochemistry 26: 2785–2790, 1987

    Article  PubMed  Google Scholar 

  57. Gross JM, Baldwin RL: Kinetic mechanism of a partial folding reaction. 2. Nature of the transition state. Biochemistry 37: 2556–2563, 1998

    Article  PubMed  Google Scholar 

  58. Jacob MH, Saudan C, Holtermann G, Martin A, Perl D, Merbach AE, Schmid FX: Water contributes actively to the rapid crossing of a protein unfolding barrier. J Mol Biol 318: 837–845, 2002

    Article  PubMed  Google Scholar 

  59. Tsou CL: The role of active site flexibility in enzyme catalysis. Biochemistry (Mosc) 63: 253–300, 1998

    PubMed  Google Scholar 

  60. Demchenko AP, Ruskyn OI, Saburova EA: Kinetics of the lactate dehydrogenase reaction in high-viscosity media. Biochim Biophys Acta 998: 196–203, 1989

    PubMed  Google Scholar 

  61. Martin SF, Hergenrother PJ: Catalytic cycle of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus. Solvent viscosity, deuterium isotope effects, and proton inventory studies. Biochemistry 38: 4403–4408, 1999

    Article  PubMed  Google Scholar 

  62. Nieslanik BS, Dabrowski MJ, Lyon RP, Atkins WM: Stopped-flow kinetic analysis of the ligand-induced coil-helix transition in glutathione S-transferase A1–1: Evidence for a persistent denatured state. Biochemistry 38: 6971–6980, 1999

    Article  PubMed  Google Scholar 

  63. Nakamoto RK, Slayman CW: Molecular properties of the fungal plasma-membrane H+-ATPase. J Bioenerg Biomembr 21: 621–632, 1989

    Article  PubMed  Google Scholar 

  64. Williams SP, Haggie PM, Brindle KM, 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys J 72: 490–498, 1997

    PubMed  Google Scholar 

  65. Sierks MR, Sico C, Zaw M: Solvent and viscosity effects on the rate-limiting product release step of glucoamylase during maltose hydrolysis. Biotechnol Prog 13: 601–608, 1997

    Article  PubMed  Google Scholar 

  66. Guerra G, Uribe S, Pardo JP: Reactivity of the H+-ATPase from Kluyveromyces lactis to sulfhydryl reagents. Arch Biochem Biophys 321: 101–107, 1995

    Article  PubMed  Google Scholar 

  67. Bowman BJ, Slayman CW: The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J Biol Chem 254: 2928–2934, 1979

    PubMed  Google Scholar 

  68. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  Google Scholar 

  69. Fiske CH, Subbarow Y: The colorimetric determination of phosphorous, J Biol Chem 66: 375–400, 1925

    Google Scholar 

  70. Anderson KW, Murphy AJ: Alterations in the structure of the ribose moiety of ATP reduce its effectiveness as a substrate for the sarcoplasmic reticulum ATPase. J Biol Chem 258: 14276–14278, 1983

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampedro, J.G., Uribe, S. Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity. Mol Cell Biochem 256, 319–327 (2004). https://doi.org/10.1023/B:MCBI.0000009878.21929.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009878.21929.eb

Navigation