Skip to main content
Log in

On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proof is the fact, discussed in the second part of this Letter, that coisotropic submanifolds of a (twisted) Poisson manifold are in one-to-one correspondence with possibly singular Lagrangian subgroupoids of source-simply-connected (twisted) symplectic groupoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bursztyn, H., Crainic, M., Weinstein, A. and Zhu, C.: Integration of twisted Dirac brackets, math.DG/0303180, to appear in Duke Math. J.

  2. Cannas da Silva, A. and Weinstein, A.: Geometric Models for Noncommutative Algebras, Berkeley Math. Lecture Notes, Amer. Math. Soc., Providence, 1999.

    Google Scholar 

  3. Cattaneo, A. S. and Felder, G.: Poisson sigma models and symplectic groupoids, In: N. P. Landsman, M. Pflaum, and M. Schlichenmeier (eds), Quantization of Singular Symplectic Quotients, Progr. in Math. 198, Birkhäuser, Basel, 2001, pp. 61–93; math.SG/0003023.

    Google Scholar 

  4. Cattaneo, A. S. and Felder, G.: Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, math.QA/0309180.

  5. Cattaneo, A. S. and Xu, P.: Integration of twisted Poisson structures, math.SG/0302268, to appear in J. Geom. Phys.

  6. Coste, A., Dazord, P. and Weinstein, A.: Groupoïdes symplectiques, Pub. Département de Mathématiques de l'Université de Lyon I 2/A (1987), 1–65.

    Google Scholar 

  7. Crainic, M. and Fernandes, R. L.: Integrability of Lie brackets, Ann. Math. 157 (2003) 575–620.

    Google Scholar 

  8. Crainic, M. and Fernandes, R. L.: Integrability of Poisson brackets, math.DG/0210152.

  9. Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 508–538, (English) Math. USSR-Izv. 28 (1987), 497–527; Karasev, M. V. and Maslov, V. P.: Nonlinear Poisson Brackets, Geometry and Quantization, Transl. Math. Monogr. vol 119, Amer. Math. Soc., Providence, 1993.

    Google Scholar 

  10. Koszul, J. L.: Crochet de Schouten-Nijenhuis et cohomologie, Élie Cartan et le mathématiques d'adjourd'hui, Astérisque, Numéro Hors Serie, Soc. Math. France, Paris, 1985, pp. 257–271.

    Google Scholar 

  11. Mackenzie, K. C. H.: Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Note Ser. 124, Cambridge Univer. Press, 1987.

  12. Mackenzie, K.C.H. and Xu, P.: Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415–452.

    Google Scholar 

  13. Moerdijk, I. and Mrun, J.: On integrability of infinitesimal actions, Amer. J. Math. 124 (2002), 567–593.

    Google Scholar 

  14. Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales, C.R. Acad. Sci. Paris, Série A 263 (1966), 907–910.

    Google Scholar 

  15. Ševera, P.: Some title containing the words 'homotopy' and 'symplectic', e.g. this one, math.SG/0105080.

  16. Ševera, P. and Weinstein, A.: Poisson geometry with a 3-form background, Progr. Theor. Phys. Suppl. 144 (2001), 145–154, math.SG/0107133.

    Google Scholar 

  17. Weinstein, A.: Lectures on Symplectic Manifolds, Regional Conf. Ser. Math. 29, Amer. Math. Soc., Providence, 1977.

    Google Scholar 

  18. Weinstein, A.: Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705–727.

    Google Scholar 

  19. Xu, P.: On Poisson groupoids, Internat. J. Math. 6 (1995), 101–124.

    Article  Google Scholar 

  20. Zakrzewski, S.: Quantum and classical pseudogroups. Part I: Union pseudogroups and their quantization, Comm. Math. Phys. 134 (1990), 347–370; Quantum and classical pseudogroups. Part II: Differential and symplectic pseudogroups, Comm. Math. Phys. 134 (1990), 371–395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo>, A.S. On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds. Letters in Mathematical Physics 67, 33–48 (2004). https://doi.org/10.1023/B:MATH.0000027690.76935.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000027690.76935.f3

Navigation