Skip to main content
Log in

Thermal, spectral and magnetic properties of 2-hydroxy-1,4-naphthoquinone monoximates of Ho(III), Er(III) and Yb(III)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ho(III), Er(III) and Yb(III) complexes of 2-hydroxy-1,4-naphthoquinone-1-oxime derivatives having [ML3(H2O)2] are characterized using spectral and thermal decomposition studies. The thermolytic patterns suggested that they are decomposed in three distinct stages; 1ststage is related to the loss of two coordinated water molecules while one of the coordinated ligands and remaining two ligands are lost during subsequent 2nd and 3rd stages of degradation. After the 2nd stage, the structure of these complexes is reorganized reflecting that the structural associations through intermolecular hydrogen bonding network is essential for thermal stability. The kinetic parameters computed for 2nd step using the non-isothermal procedures of Coats-Redfern are applied to the respective differential thermogravimetric plots to ascertain the thermal degradation mechanism in air. The order of thermal decomposition reaction is found to be between 1-2 indicating that more than one intermediate might have simultaneously been formed. It also reveals the intermixing of 1st and 3rd stages of decomposition with the predominant 2nd stage leading to more gradual degradation. Energy of activation for 2nd stage of decomposition for these complexes is comparatively lower than those observed earlier for similar types of complexes. Other spectral data indicate oximino nitrogen and phenolato oxygen as coordination sites of 2-hydroxy-1,4-naphthoquinone monoximates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Aspinall, Chem. Rev., 102 (2002) 1807.

    Article  CAS  Google Scholar 

  2. G. A. Molander and J. A. C. Romero, Chem. Rev., 102 (2002) 2161.

    Article  CAS  Google Scholar 

  3. M. Shibasaki and N. Yoshikawa, Chem. Rev., 102 (2002) 2187.

    Article  CAS  Google Scholar 

  4. K. Binnemans and C. G. Walrand, Chem. Rev., 102 (2002) 2303.

    Article  CAS  Google Scholar 

  5. K. Kuriki and Y. Koike, Chem. Rev., 102 (2002) 2347.

    Article  CAS  Google Scholar 

  6. J. Kido and Y. Okamoto, Chem. Rev., 102 (2002) 2357.

    Article  CAS  Google Scholar 

  7. H. Tsukube and S. Shinoda, Chem. Rev., 102 (2002) 2389.

    Article  CAS  Google Scholar 

  8. M. P. Mulay, P. L. Garge, S. B. Padhye, R. C. Haltiwanger, I. A. deLearie and C. G. Pierpont, J. Chem. Soc. Chem. Commun., (1987) 581.

  9. S. Padhye, P. Garge and M. P. Gupta, Inorg. Chim. Acta, 152 (1988) 37.

    Article  CAS  Google Scholar 

  10. P. L. Garge, S. B. Padhye and J. P. Tuchagues, Inorg. Chim. Acta, 157 (1989) 37.

    Article  Google Scholar 

  11. P. Garge, R. Chikate, S. Padhye, J. M. Savariault, P. deLoth and J. P. Tuchagues, Inorg. Chem., 29 (1990) 3315.

    Article  CAS  Google Scholar 

  12. S. Y. Rane, J. P. Salvekar, N. V. R. Das, P. S. Kaduskar and P. P. Bakare, Thermochim. Acta, 191 (1991) 255.

    Article  CAS  Google Scholar 

  13. S. Y. Rane, S. B. Padhye, E. M. Khan and P. L. Garge, Synth. React. Inorg. Met-Org. Chem., 18 (1988) 609.

    CAS  Google Scholar 

  14. S. Y. Rane, S. B. Padhye, G. N. Natu, A. H. Kumar and E. M. Khan, J. Thermal Anal., 35 (1989) 2331.

    Article  CAS  Google Scholar 

  15. S. Y. Rane, S. D. Gawali, A. S. Kumbhar, S. B. Padhye and P. P. Bakare, J. Therm. Anal. Cal., 55 (1999) 249.

    Article  CAS  Google Scholar 

  16. A. S. M. A. Shihri and H. M. A. Fattah, J. Therm. Anal. Cal., 71 (2003) 643.

    Article  Google Scholar 

  17. E. Princz, I. Szilágyi, K. Mogyorósi and I. Lábadi, J. Therm. Anal. Cal., 69 (2002) 427.

    Article  CAS  Google Scholar 

  18. J. Sharma and H. B. Singh, Inorg. Chim. Acta, 133 (1987) 161.

    Article  CAS  Google Scholar 

  19. M. L. Dhar and O. Singh, Inorg. Chim. Acta, 117 (1986) 187.

    Article  CAS  Google Scholar 

  20. R. C. Chikate, H. A. Bajaj, A. S. Kumbhar, V. C. Kolhe and S. B. Padhye, Thermochim. Acta, 249 (1995) 239.

    Article  CAS  Google Scholar 

  21. F. V. Dandawate, J. G. Kadolikar, V. D. Kelkar and B. A. Kulkarni, Thermochim. Acta, 241 (1994) 103.

    Article  CAS  Google Scholar 

  22. S. B. Jagtap, S. G. Joshi, G. M. Litake, V. S. Ghole and B. A. Kulkarni, Metal Based Drugs, 7 (2000) 147.

    CAS  Google Scholar 

  23. S. B. Jagtap, N. N. Patil, B. P. Kapadnis and B. A. Kulkarni, Metal Based Drugs, 8 (2001) 159.

    CAS  Google Scholar 

  24. D. D. Perrin, W.L.F. Armarego and D. R. Perrin, "Purification of Laboratory Chemicals', Pergamon Press, Oxford 1966.

    Google Scholar 

  25. L. N. Mulay and I. N. Mulay, Anal. Chem., 44 (1972) 324; B. N. Figgis and J. Lewis in F.A. Cotton (Ed.), Prog. Inorg. Chem., Vol. 6, Interscience, New York 1964 and R. S. Drago, "Physical Methods in Chemistry', W. B. Saunders Co., Philadelphia 1977 and references therein.

    Article  Google Scholar 

  26. B. N. Figgis and J. Lewis in J. Lewis and R. G. Willkinson (Eds), Modern Coordination Chemistry: Principles and Methods, Interscience, New York 1968, p. 403.

    Google Scholar 

  27. C. G. Pierpont and R. M. Buchanan, Coord. Chem. Rev., 38 (1981) 45.

    Article  CAS  Google Scholar 

  28. S. S. Sawhney, R. Jain and J.M.M. Singh, Thermochim. Acta, 132 (1988) 275.

    Article  CAS  Google Scholar 

  29. S. S. Sawhney and B. M. L. Bhatia, Thermochim. Acta, 43 (1981) 243.

    Article  CAS  Google Scholar 

  30. W. Berzyska, A. Kula and Z. Rzaezynska, J. Thermal Anal., 47 (1991) 599.

    Google Scholar 

  31. R. S. Bottei and C. P. McEchern, J. Inorg. Nucl. Chem., 32 (1970) 2653.

    Article  CAS  Google Scholar 

  32. V. D. Kelkar, H. R. Gholap, R. R. Gokhale and M. B. Kulkarni, Ind. J. Chem., 37A (1998) 915.

    Google Scholar 

  33. A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.

    Article  CAS  Google Scholar 

  34. D. A. Anderson and E. S. Freeman, J. Appl. Polym. Sci., 1 (1959) 192.

    Article  CAS  Google Scholar 

  35. J. H. Van Vleck and N. Frank, Phys. Rev., 34 (1929) 1494, 1625.

    Article  CAS  Google Scholar 

  36. T. Moeller and E.P. Horowitz, J. Inorg. Nucl. Chem., 12 (1960) 49.

    Article  Google Scholar 

  37. D. E. Henrie, Coord. Chem. Rev., 18 (1976) 119.

    Article  Google Scholar 

  38. S. P. Sinha, Spectrochim. Acta, 22 (1966) 57.

    Article  CAS  Google Scholar 

  39. T. R. Rao, I. A. Khan and R. C. Agrawal, J. Ind. Chem. Soc., 63 (1986) 380.

    CAS  Google Scholar 

  40. R. S. Drago, "Physical Methods for Chemists', Saunders College Publishing 2nd., 1992.

  41. A. Chakravorty, Coord. Chem. Rev., 13 (1974) 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagtap, S.B., Chikate, R.C., Yemul, O.S. et al. Thermal, spectral and magnetic properties of 2-hydroxy-1,4-naphthoquinone monoximates of Ho(III), Er(III) and Yb(III). Journal of Thermal Analysis and Calorimetry 78, 251–262 (2004). https://doi.org/10.1023/B:JTAN.0000042172.51676.7f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000042172.51676.7f

Navigation