Skip to main content
Log in

Oxidation kinetics study of the iron-based steel for solid oxide fuel cell application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetics of oxidation of Fe-Cr steel containing 25 wt.-percent Cr was studied as a function of temperature (1023–1173 K) for up to 480 h in flowing air, which corresponds to SOFC cathode environment operating conditions. The oxidation process was found to be a parabolic, suggesting that the diffusion of ionic defects in the scale is the slowest, rate determining step and it occurs predominantly by short-circuit diffusion paths. Comparison of the determined activation energy of oxidation of the studied steel with literature data indicates that at 1098–1173 K the chromia scale grows by the outward solid-state diffusion of chromium interstitials, whereas at 1023–1098 K — through a significant contribution of counter-current oxygen/chromium diffusion along Cr2O3 grain boundaries. The oxide scales were composed mainly of Cr2O3 with a continuous thin Mn1.5Cr1.5O4 spinel layer on top of the chromia scale. The oxidation test results on Fe-25Cr steel demonstrate the applicability of the commercial type DIN 50049 stainless steel as interconnect for SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Quaddakkers, H. Greiner and W. Köck, Proceedings 1st European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, European SOFC Forum Secretariat, Baden, Switzerland, 1994, p. 525.

    Google Scholar 

  2. T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumi and T. Maruyama, Solid State Ionics, 67 (1993) 65.

    Article  CAS  Google Scholar 

  3. L. Mikkelsen, P. H. Larsen and S. Linderoth, J. Therm. Anal. Cal., 64 (2001) 879.

    Article  CAS  Google Scholar 

  4. K. Przybylski, J. Prażuch, T. Brylewski and T. Maruyama, Proceedings 14th International Corrosion Congress, CorrISA, Cape Town, South Africa, Vol. 2, 1999, p. 1.

    Google Scholar 

  5. T. Brylewski, M. Nanko, T. Maruyama and K. Przybylski, Solid State Ionics, 143 (2001) 131.

    Article  CAS  Google Scholar 

  6. W. Z. Zhu and S. C. Deevi, Mat. Sci. Eng., A 348 (2003) 227.

    Article  CAS  Google Scholar 

  7. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam 1995.

    Google Scholar 

  8. P. Kofstad, High Temperature Corrosion, Elsevier, New York 1988.

    Google Scholar 

  9. W. C. Hagel, Trans. Am. Soc. Metals, 56 (1963) 583.

    CAS  Google Scholar 

  10. W. C. Hagel and A. W. Seybolt, J. Electrochem. Soc., 108 (1961) 1246.

    Google Scholar 

  11. K. Przybylski and G. J. Yurek, Mater. Sci. Forum, 43 (1989) 1.

    Article  CAS  Google Scholar 

  12. D. Mortimer and W. B. A. Sharp, Br. Corros. J., 3 (1968) 61.

    CAS  Google Scholar 

  13. W. C. Hagel, J. Am. Ceram. Soc., 48 (1965) 70.

    Article  CAS  Google Scholar 

  14. M. G. E. Cox, B. McEnanay and V. D. Scott, Phil. Mag., 26 (1972) 839.

    CAS  Google Scholar 

  15. M. Oku, S. Nakamura and N. Hiramatsu, Mater. High Temp., 18(S) (2001) 153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brylewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brylewski, T., Dąbek, J. & Przybylski, K. Oxidation kinetics study of the iron-based steel for solid oxide fuel cell application. Journal of Thermal Analysis and Calorimetry 77, 207–216 (2004). https://doi.org/10.1023/B:JTAN.0000033205.69427.8e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000033205.69427.8e

Navigation