Skip to main content
Log in

Synthesis and Microstructural Properties of Fe-TiO2 Nanocrystalline Particles Obtained by a Modified Sol-Gel Method

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of iron/titanium oxide nanocrystalline particles with Fe/Ti molar ratios up to 0.15 were synthesized by a modified sol-gel technique using Ti(IV)-isopropoxide and anhydrous Fe(II)-acetate. The precursors were mixed and subsequently hydrolyzed with water molecules generated in situ by an esterification reaction between acetic acid and ethanol. As-synthesized samples were amorphous for XRD, independently of the relative amount of doped iron. The undoped samples and samples with the molar ratio Fe/Ti = 0.01, treated at up to 500°C, contained anatase as the dominant phase and rutile as the minor phase. The samples with the Fe/Ti molar ratio of 0.15, treated at the same temperature, contained anatase (major phase), rutile (minor phase) and a very small amount of an unidentified phase. The crystallite size of the dominant phase in the samples was estimated from the XRD line broadening using the Scherrer formula. Thermogravimetric analysis showed that weight loss was accelerated and completed at lower temperatures as the relative concentration of iron in the Fe-TiO2 samples increased. The strong exothermic peak in the DTA curve between 300 and 450°C in the undoped TiO2 sample shifted to the lower temperatures and became much more asymmetrical with increased iron doping. This DTA peak corresponded to the amorphous-to-anatase-transition and it included several steps such as (i) the thermal degradation of strongly bound organic molecules, (ii) the condensation of unhydrolyzed –OR groups, (iii) the sintering and growth of particles and (iv) the rearrangement of newly formed chemical bonds. The center of the most intense Raman band of the E g mode at 143.8 cm−1 in the undoped TiO2 sample continually shifted to higher wave numbers and the full-width at half maximum increased with iron doping. Transmission electron microscopy revealed decrease of the mean particle size from 16.3 nm in undoped sample to 9.7 nm in the highest iron doped sample. The particle size distribution becomes narrower with iron doping. The narrowest particle size distribution was found in sample with the Fe/Ti molar ratio of 0.05, calcined at 500°C. Scanning electron microscopy of undoped samples calcined at 580°C showed irregular aggregates having a relatively flat surface. On the contrary, the samples doped with 15 mol% of iron and treated at the same temperature exhibited a non-uniform sponge-like surface with distributed micrometer holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Chafik, A.M. Efstathiou, and X.E. Verykios, J. Phys. Chem. B 101, 7968 (1997).

    Google Scholar 

  2. F. Milella, J.M. Gallardo-Amores, M. Baldi, and G. Busca, J. Mater. Chem. 8, 2525 (1998).

    Google Scholar 

  3. C. Lettmann, H. Hinrichs, and W.F. Maier, Angew. Chem. Int. Ed. 40, 3160 (2001).

    Google Scholar 

  4. G.N. Schrauzer and T.D. Guth, J. Am. Chem. Soc. 99, 7189 (1977).

    Google Scholar 

  5. L. Palmisano, V. Augugliaro, A. Sclafani, and M. Schiavello, J. Phys. Chem. 1988, 6710 (1988).

    Google Scholar 

  6. J. Soria, J.C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, J. Phys. Chem. 95, 274 (1991).

    Google Scholar 

  7. W. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).

    Google Scholar 

  8. C.-Y. Wang, D.W. Bahnemann, and J.K. Dohrmann, Chem. Commun. 1539 (2000).

  9. D. Bockelmann, M. Lindner, and D. Bahnemann, in Fine Particles Science and Technology, edited by E. Pelizzetti (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), p. 675.

    Google Scholar 

  10. J. Araña, O. González Díaz, M. Miranda Saracho, J.M. Doña Rodríguey, J.A. Herrera Melián, and J. Pérey Peña, Appl. Catal. B: Eviron. 32, 49 (2001).

    Google Scholar 

  11. J. Araña, O. González Díaz, M. Miranda Saracho, J.M. Doña Rodríguey, J.A. Herrera Melián, and J. Pérey Peña, Appl. Catal. B: Eviron. 36, 113 (2002).

    Google Scholar 

  12. K.T. Ranjit, I. Willner, S. Bossmann, and A. Braun, J. Phys. Chem. B 102, 9397 (1998).

    Google Scholar 

  13. A.B. Rivas, T.S. Kulkarni, and A.L. Schwaner, Langmuir 9, 192 (1993).

    Google Scholar 

  14. Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, and S. Cai, J. Mater. Sci. 34, 3721 (1999).

    Google Scholar 

  15. K. Kato, A. Tsuge, and Ko-ichi Niihara, J. Am. Ceram. Soc. 79, 1483 (1996).

    Google Scholar 

  16. D. Cordischi, N. Burriesci, F. D'Alba, M. Petrera, G. Polizzotti, and M. Schiavello, J. Solid State Chem. 56, 182 (1985).

    Google Scholar 

  17. J.S. Thorp, H.S. Eggleston, T.A. Egerton, and A.J. Pearman, J. Mater. Sci. Lett. 5, 54 (1986).

    Google Scholar 

  18. R.I. Bickley, J.S. Lees, R.J.D. Tilley, L. Palmisano, and M. Schiavello, J. Chem. Soc. Faraday Trans. 88, 377 (1992).

    Google Scholar 

  19. R.I. Bickley, T. Gonzalez-Carreño, A.R. Gonzalez-Elipé, G. Munuera, and L. Palmisano, J. Chem. Soc. Faraday Trans. 90, 2257 (1994).

    Google Scholar 

  20. U. Schwertmann, J. Friedl, G. Pfab, and A.U. Gehring, Clays & Clay Miner. 43, 599 (1995).

    Google Scholar 

  21. M.V. Tsodikov, O.V. Bukhtenko, O.G. Ellert, V.M. Shcherbakov, and D.I. Kochubey, J. Mater. Sci. 30, 1087 (1995).

    Google Scholar 

  22. J. A. Navío, G. Colón, M. Macías, C. Real, and M.I. Litter, Appl. Catal. A 177, 111 (1999).

    Google Scholar 

  23. Yu-H. Zhang and A. Reller, J. Mater. Chem. 11, 2537 (2001).

    Google Scholar 

  24. J.A. Wang, R. Limas-Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro, and X. Bokhimi, J. Phys. Chem. B 105, 9692 (2001).

    Google Scholar 

  25. P. Guglielmi and P. Colombo, Cer. Acta 1, 19 (1989).

    Google Scholar 

  26. P. Colombo, M. Guglielmi, and S. Enzo, J. European Ceram. Soc. 8, 383 (1991).

    Google Scholar 

  27. M. Maček, B. Orel, and T. Meden, J. Sol-Gel Sci. Technol. 8, 771 (1997).

    Google Scholar 

  28. Zh. H. Suo, Y. Kou, and H. Wang, Chin. J. Catal. 22, 348 (2001).

    Google Scholar 

  29. N. Smirnova, A. Eremenko, O. Rusina, W. Hopp, and L. Spanhel, J. Sol-Gel Sci. Technol. 21, 109 (2001).

    Google Scholar 

  30. E. Tronc, M. Gotić, S. Musić, M. Ivanda, and S. Popović, unpublished results.

  31. H. Schmidt and B. Seiferling, Mat. Res. Soc. Symp. Proc. 73, 739 (1986).

    Google Scholar 

  32. A. Larbot, I. Laaziz, J. Marignan, and J.F. Quinson, J. Non-Crystall. Solids 147/148, 157 (1992).

    Google Scholar 

  33. C.-C. Huang and Chi-Sh. Wu, Journal of The Chin. I. Ch. E. 28, 61 (1997).

    Google Scholar 

  34. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Crystall. Solids 89, 206 (1987).

    Google Scholar 

  35. P. Griesmar, G. Papin, C. Sanchez, and J. Livage, Chem. Mater. 3, 335 (1991).

    Google Scholar 

  36. S. Barboux-Doeuff and C. Sanchez, Mat. Res. Bull. 29, 1 (1994).

    Google Scholar 

  37. J.A. Navío, G. Colón, M.I. Litter, and G.N. Bianco, J. Mol. Catal. 106, 267 (1996).

    Google Scholar 

  38. J.A. Navío, G. Colón, M. Trillas, J. Peral, X. Domènech, J.J. Testa, J. Padrón, D. Rodríguez, and M.I. Litter, Appl. Catal. B 16, 187 (1998).

    Google Scholar 

  39. B. Pal, M. Sharon, and G. Nogami, Mater. Chem. Phys. 59, 254 (1999).

    Google Scholar 

  40. S. Ivanković, M. Gotić, M. Jurin, and S. Musić, J. Sol-Gel Sci. Technol. 27, 225 (2003).

    Google Scholar 

  41. M. Codell, Analytical Chemistry of Titanium Metals and Compounds (Interscience Publishers, Inc., New York, Interscience Publishers Ltd., London, 1959), p. 178.

    Google Scholar 

  42. J.M. Gallardo Amores, V. Sanchez Escribano, and G. Busca, J. Mater. Chem. 5, 1245 (1995).

    Google Scholar 

  43. R. Rodríguez-Talavera, S. Vargas, R. Arroyo-Murillo, R. Montiel-Campos, and E. Haro-Poniatowski, J. Mater. Res. 12, 439 (1997).

    Google Scholar 

  44. K.-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, H. Nagamoto, and S. Morooka, Nature 358, 48 (1992).

    Google Scholar 

  45. I.R. Beattie and T.R. Gilson, J. Am. Chem. Soc. (A) 2322 (1969).

  46. S.P. Porto, P.A. Fleury, and T.C. Damen, Phys. Rev. 154, 522 (1967).

    Google Scholar 

  47. J.C. Parker and R.W. Siegel, J. Mater. Res. 5, 1246 (1990).

    Google Scholar 

  48. A. Turković, M. Ivanda, A. Drašner, V. Vraneša, and M. Peršin, Thin Solid Films 198, 199 (1991).

    Google Scholar 

  49. G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers, and J.M. Seakins, J. Raman Spectrosc. 26, 57 (1995).

    Google Scholar 

  50. Y. Iida, M. Furukawa, K. Kato, and H. Morikawa, Appl. Spectrosc. 51, 673 (1997).

    Google Scholar 

  51. S. Kelly, F.H. Pollak, and M. Tomkiewicz, J. Phys. Chem. B. 101, 2730 (1997).

    Google Scholar 

  52. D. Bersani, G. Antonioli, P.P. Lottici, and T. Lopez, J. Non-Crystall. Solids 232–234, 175 (1998).

    Google Scholar 

  53. D. Bersani, P. Lottici, and X-Z Ding, Appl. Phys. Lett. 72, 73 (1998).

    Google Scholar 

  54. J. Slunečko, M. Kosec, J. Holc, G. Dražić, and B. Orel, J. Am. Ceram. Soc. 81, 1121 (1998).

    Google Scholar 

  55. M. Gotić, M. Ivanda, A. Sekulić, S. Musić, S. Popović, A. Turković, and K. Furić, Mater. Lett. 28, 225 (1996).

    Google Scholar 

  56. S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, and K. Furić, Mater. Sci. Eng. B 47, 33 (1997).

    Google Scholar 

  57. M. Gotić, M. Ivanda, S. Popović, S. Musić, A. Sekulić, A. Turković, and K. Furić, J. Raman. Spectr. 28, 555 (1997).

    Google Scholar 

  58. M. Ivanda, S. Musić, M. Gotić, A. Turković, A.M. Tonejc, and O. Gamulin, J. Mol. Struct. 480/481, 641 (1999).

    Google Scholar 

  59. D. Bersani, P.P. Lottici, and A. Montenero, J. Mater. Sci. 35, 4301 (2000).

    Google Scholar 

  60. Z.-M. Wang, G.X. Yang, P. Biswas, W. Bresser, and P. Boolchand, Powder Technol. 114, 197 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šijaković-Vujičić, N., Gotić, M., Musić, S. et al. Synthesis and Microstructural Properties of Fe-TiO2 Nanocrystalline Particles Obtained by a Modified Sol-Gel Method. Journal of Sol-Gel Science and Technology 30, 5–19 (2004). https://doi.org/10.1023/B:JSST.0000028174.90247.a9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000028174.90247.a9

Navigation