Skip to main content
Log in

Martin Boundary of Polynomial Random Walks on the d-Dimensional Lattice of Nonnegative Integers

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A random walk on ℕd endowed with a structure of polynomial hypergroup, is a Markov chain which transition kernel takes the form of an operator \(T_\mu = \sum {_{n \in \mathbb{N}^d } \mu (n){\text{ }}T_n },\), where μ is a probability measure on ℕd and \((T_n )_{n \in \mathbb{N}^d } \) are the hypergroup translations. In this paper, we study the positive spectrum of the operator T μ , and we give an integral representation formula for its positive eigenvectors. Our result also contains the description of the Martin boundary. Then, we consider the particular case of the random walk to the nearest neighbour with reflecting barriers on the coordinate hyperplanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Babillot, M. (1992). Potential at infinity on symmetric spaces and Martin boundary. In Picardello, M. A. (ed.), Harmonic Analysis and Discrete Potential Theory, Plenum, New York.

    Google Scholar 

  2. Bloom, W., and Heyer, H. (1995). Harmonic analysis of probability measures on hypergroups. In Studies in Mathematics, Vol.20, de Gruyter, Berlin.

    Google Scholar 

  3. Choquet, G. (1956). FrExistence et unicité des représentations intégrales au moyen des points extrémaux dans les clones convexes. Séminaire Bourbaki 139, 33-47.

    Google Scholar 

  4. Choquet, G., and Deny, J. (1960). FrSur l'équation de convolution μ≔μ ⋆ Σ C. R. Acad. Sci. Paris Sér. I 250, 799-801.

    Google Scholar 

  5. Conze, J.-P., and Guivarc'h, Y. (1974). FrPropriété de droite fixe et fonctions propres des opérateurs de convolution. In Théorie du potentiel et analyse harmonique, Lecture Note in Mathematics, Vol.404, Springer-Verlag, pp. 126-133.

  6. Derriennic, Y. (1975). FrMarche aléatoire sur le groupe libre et frontière de Martin. Z. Wahrsch. Verwante Gebiete 32, 261-276.

    Google Scholar 

  7. Doob, J. L. (1959). Discrete potential theory and boundaries. J. Math. Mech. 8, 433-458.

    Google Scholar 

  8. Doob, J. L., Snell, J. L., and Williamson, R. E. (1960). Application of boundary theory to sums of independent random variables. In Contributions to Probability and Statistics, Chapter 16, Stanford University Press, Stanford, California, pp. 182-197.

    Google Scholar 

  9. Dunau, J. L. (1976). FrÉtude d'une marche aléatoire sur l'arbre homogène, Publications de l'Université Paul Sabatier Toulouse.

  10. Favard, J. (1935). FrSur les polynlomes de Tchebychev. C. R. Acad. Sci. Paris Sér. I 200, 2052-2055.

    Google Scholar 

  11. Furstenberg, H. (1965). Translation invariant cones of functions on semi-simple Lie groups. Bull. Amer. Math. Soc. 71, 271-326.

    Google Scholar 

  12. Gallardo, L. (2002). A multidimensional central limit theorem for random walks on hypergroups. Stochastics Stochastics Rep. 73, 1-23.

    Google Scholar 

  13. Gallardo, L., and Gebuhrer, O. (1987). Marches aléatoires et hypergroupes. Exposition. Math. 51), 41-73.

    Google Scholar 

  14. Guivarc'h, Y., Ji, L., and Taylor, J. C. (1998). Compactifications of Symmetric Spaces, Progress in Mathematics, Vol.156, Birkhäuser, Boston/Basel/Berlin.

    Google Scholar 

  15. Hunt, G. A. (1960). Markov chains and Martin boundaries. Illinois J. Math. 4, 313-340.

    Google Scholar 

  16. Kurkova, I. A., and Malyshev, V. A. (1998). Martin boundaries and elliptic curves. Markov Process. Related Fields 42), 203-272.

    Google Scholar 

  17. Lamperti, J., and Snell, J. L. (1963). Martin boundaries for certain Markov chains. J. Math. Soc. Japan 152), 113-128.

    Google Scholar 

  18. Lasser, R. (1983). Orthogonal polynomials and hypergroups. Rend. Mat. (7) 3, 185-209.

    Google Scholar 

  19. Neveu, J. (1964). FrPotentiels markoviens discrets. Ann. Fac. Sci. Univ. Clermont-Ferrand 24, 37-89.

    Google Scholar 

  20. Raugi, A. (1996). FrFonctions harmoniques positives sur certains groupes de Lie résolubles connexes. Bull. Soc. Math. France 1244), 649-684.

    Google Scholar 

  21. Revuz, D. (1984). Markov Chains, 2nd ed., North-Holland, Amsterdam.

    Google Scholar 

  22. Rogers, L. C. G., and Williams, D. (2000). Diffusions, Markov Processes, and Martingales, 2nd ed., Vol.1, Cambridge University Press, Cambridge.

    Google Scholar 

  23. Szwarc, R. (1992). Convolution structures associated with orthogonal polynomials. J. Math. Anal. Appl. 1701), 158-170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godefroy, L. Martin Boundary of Polynomial Random Walks on the d-Dimensional Lattice of Nonnegative Integers. Journal of Theoretical Probability 17, 111–129 (2004). https://doi.org/10.1023/B:JOTP.0000020477.86897.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000020477.86897.82

Navigation