Skip to main content
Log in

Life on the Edge of Chaos

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this article we consider singularly perturbed systems of ordinary differential equations having one swift and one n (n ≥ 3) slow variable. Conditions for the existence of attractors of hard turbulence type and of on-off intermittency are formulated. It is shown that any finite-dimensional system with chaos can be complemented so that it will have one dimension more and hard turbulence will arise. In other words, we propose one possible way of taking into account rare catastrophic events in systems with complicated behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, Asymptotic methods of study of periodic solutions for nonlinear hyperbolic equations, MAIK “Nauka”, Moscow (1998), Tr. Mat. Inst. im. V. A. Steklova, 222 (1998).

    Google Scholar 

  2. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “The bufferness phenomenon in resonance systems of nonlinear hyperbolic systems,” Usp. Mat. Nauk, 55,No. 2 (332), 95–120 (2000).

    Google Scholar 

  3. A. Yu. Kolesov and N. Kh. Rozov, “The diffusion bufferness effect in a model of mathematical biology,” Izv. Ros. Akad. Nauk, Ser. Mat., 62,No. 5, 135–164 (1998).

    Google Scholar 

  4. A. Yu. Kolesov and N. Kh. Rozov, “On the existence of an asymptotically large number of stable dissipative structures in parabolic systems with small diffusion,” Trudy Seminara im. I. G. Petrovskogo, 20, 3–26 (2000).

    Google Scholar 

  5. A. Yu. Kolesov and N. Kh. Rozov, “The buffer effect in distributed mechanical systems,” Prikl. Mat. Mekh., 65,No. 2, 183–198 (2001).

    Google Scholar 

  6. T. Pu, Nonlinear Economical Dynamics [in Russian], Series “Regular and Chaotic Dynamics,” Izhevsk (2000).

  7. P. Berger, Y. Pomeau, and C. Vidal, Order in Chaos. On a Deterministic Approach to Turbulence [in Russian], Merkurij-PRESS, Moscow (2000).

    Google Scholar 

  8. N. Platt, E. A. Spiegel, and C. Tresser, “On-off intermittency: a mechanism for bursting,” Phys. Rev. Lett., 70, 279–282 (1993).

    Google Scholar 

  9. E. Ott and J. C. Sommerer, “Blowout bifurcations: the occurrence of riddled basins and on-off intermittency,” Phys. Lett. A, 188, 39 (1994).

    Google Scholar 

  10. A. S. Venkataramani, T. M. Antonsen, Jr., E. Ott, and J. C. Sommerer, “On-off intermittency: power spectrum and fractal properties of time series,” Physica D, 96, 66–99 (1996).

    Google Scholar 

  11. M. Bartuchelli, P. Constantin, C. R. Doering, J. D. Gibbon, and M. Gisselfalt, “On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation,” Physica D, 44, 421–444 (1990).

    Google Scholar 

  12. H. Iwasaki and S. Toh, “Statistics and structures of strong turbulence in a complex Ginzburg-Landau equation,” Progr. Theor. Phys., 87, 1127 (1992).

    Google Scholar 

  13. G. G. Malinetski and A. B. Potapov, Modern Problems of Nonlinear Dynamics [in Russian], Editorial URSS, Moscow (2000).

    Google Scholar 

  14. E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Periodic Motion and Bifurcation Processes in Singularly Perturbed Systems [in Russian], Fizmatlit, Moscow (1995).

    Google Scholar 

  15. J. Milnor, “On the concept of attractor,” Comm. Math. Phys., 99,No. 2, 177–196 (1985).

    Google Scholar 

  16. R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading, MA (1989).

    Google Scholar 

  17. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On Devaney's definition of chaos,” Amer. Math. Monthly, 99,No. 4, 332–334 (1992).

    Google Scholar 

  18. V. S. Afraimovich, V. S. Bykov, and L. P. Shilnikov, “On attracting non-structurally stable limit sets of Lorentz attractor type,” Trudy Mos. Mat. Ob-va, 44, 150–212 (1982).

    Google Scholar 

  19. R. V. Plykin, F. A. Sataev, and S. V. Shliachkov, “Strange attractors,” in: Itogi Nauki i Tekhniki. Sovr. Problemy Matemaliki, 66, VINITI, Moscow (1991), 100–148.

    Google Scholar 

  20. C. Robinson, “Homoclinic bifurcation to a transitive attractor of Lorenz type,” Nonlinearity, 2,No. 4, 495–518 (1989).

    Google Scholar 

  21. A. B. Vasilieva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations [in Russian], Fizmatlit, Moscow (1973).

    Google Scholar 

  22. V. A. Vladimirov, V. A. Vorobiev, S. S. Salov, et al., Risk control: Risk. Stable Development. Synergetics [in Russian], Nauka, Moscow (2000).

    Google Scholar 

  23. Ya. G. Sinai, “Stochasticity of dynamic systems,” in: Nonlinear Waves [in Russian], Nauka, Moscow (1979), pp. 192–212.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, A.Y., Rozov, N.K. & Sadovnichiy, V.A. Life on the Edge of Chaos. Journal of Mathematical Sciences 120, 1372–1398 (2004). https://doi.org/10.1023/B:JOTH.0000016055.44231.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000016055.44231.af

Keywords

Navigation