Skip to main content
Log in

Studies on the Hydrolytic Behavior of Zirconium(IV)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stability constants of zirconium(IV) hydrolysis species have been measured at 15, 25, and 35 °C [in 1.0 mol-dm−3 (H,Na)ClO4] using both potentiometry and solvent extraction. In addition, the solubility of [Zr(OH)4(am)] has been investigated in a 1 mol-dm−3 (Na,H)(ClO4,OH) medium at 25 °C over a wide range of −log [H+] (0-15). The results indicate the presence of the monomeric species Zr(OH)3+, Zr(OH)2 2+, Zr(OH)3 +, and Zr(OH)4 0(aq) as well as the polymeric species Zr4(OH)8 8+ and Zr2(OH)6 2+. The solvent extraction measurements required the use of acetylacetone. As such, the stability constants of zirconium(IV) with acetylacetone were also measured using solvent extraction. All stability constants were found to be linear functions of the reciprocal of temperature (in kelvin) indicating that Δ H o and Δ S o are both independent of temperature (over the temperature range examined in the study). The results of the solubility experiments have shown four distinctly different solubility regions. In strongly acidic solutions, the solubility is controlled by the formation of polynuclear hydrolysis species in solution whereas in less acidic solution the formation of mononuclear hydrolysis species becomes dominant. The largest portion of the solubility curve is controlled by equilibrium with aqueous Zr(OH)4 0(aq) where the solubility is independent of the proton concentration. In alkaline solutions, the solubility increases due to formation of the zirconate ion. The middle region was used to determine the solubility constant (log *K s10) of Zr(OH)4(s). From the data in the alkaline region, a value of the stability of the zirconate ion has been determined. This is the first time that the possible evidence for the zirconate ion has been identified in aqueous solution that has previously been found only in the solid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, 2nd edn. Kreiger, New York, (1986).

    Google Scholar 

  2. M. A. Pouchon, E. Curti, C. Degueldre, and L. Tobler, Progr. Nucl. Energy 38, 443(2001).

    Google Scholar 

  3. W. H. McVey, United States Atomic Energy Commission Rep., HW-21487, 1951.

  4. A. J. Zielen and R. E. Connick, J. Amer. Chem. Soc. 78, 5785(1956).

    Google Scholar 

  5. G. M. Muha and P. A. Vaughan, J. Chem. Phys. 33, 194(1960).

    Google Scholar 

  6. S. Tribalat and L. Schriver, Bull. Soc. Chim. Fr. 9, 2012(1975).

    Google Scholar 

  7. A. J. Veyland, L. Dupont, J.-C. Pierrand, J. Rimbault, and M. Aplincourt, Eur. J. Inorg. Chem. p. 1765(1998).

  8. I. A. Sheka and Ts. V. Pevzner, Russ. J. Inorg. Chem. 5, 1119(1960).

    Google Scholar 

  9. S. U. Aja, S. A. Wood, and A. E. Williams-Jones, Appl. Geochem. 10, 603(1995).

    Google Scholar 

  10. J. H. Adair, H. G. Krarup, S. Venigalla, and T. Tsukada, Mat. Res. Soc. Symp. Proc. 432, 101(1997).

    Google Scholar 

  11. A. S. Solovkin and A. I. Ivantsov, Russ. J. Inorg. Chem. 11, 1013(1966).

    Google Scholar 

  12. V. A. Nazarenko and O. V. Mandzhgaladze, Russ. J. Inorg. Chem. 14, 639(1969).

    Google Scholar 

  13. V. M. Peshkova, N. V. Mel'chakova, and S. G. Zhemchuzhin, Russ. J. Inorg. Chem. 6, 630(1961).

    Google Scholar 

  14. A. S. Solovkin, Z. N. Tsvetkova, and A. I. Ivantsov, Russ. J. Inorg. Chem. 12, 326(1967).

    Google Scholar 

  15. P. N. Kovalenko and K. N. Bagdasarov, Russ. J. Inorg. Chem. 6, 272(1961).

    Google Scholar 

  16. H. Bilinski and M. Branica, Croat. Chem. Acta 38, 263(1966).

    Google Scholar 

  17. H. Bilinski, M. Branica, and L. G. Sillén, Acta Chem. Scand. 20, 853(1966).

    Google Scholar 

  18. C. Ekberg, P. L. Brown, J. Comarmond, and Y. Albinsson, Mat. Res. Soc. Symp. Proc., Sci. Basis Nucl. Waste Manage. 663, 1091(2001).

    Google Scholar 

  19. P. L. Brown, M. E. Shying, and R. N. Sylva, J. Chem. Soc., Dalton Trans. p. 2149(1987).

  20. P. L. Brown, Ph. D. dissertation, University of Wollongong, Wollongong, Australia, 1984.

  21. C. Ekberg, Y. Albinsson, M. J. Comarmond, and P. L. Brown, J. Solution Chem. 29, 63(2000).

    Google Scholar 

  22. G. H. Khoe, P. L. Brown, R. N. Sylva, and R. G. Robins, J. Chem. Soc. Dalton Trans. p. 1901(1986).

  23. P. L. Brown and R. J. Bowdler, Australian Nuclear Science and Technology Organisation Rep., ANSTO/C120, 1990.

  24. J. Rydberg, Acta Chem. Scand. 23, 647(1969).

    Google Scholar 

  25. H. Reinhardt and J. Rydberg, Acta Chem. Scand. 23, 2773(1969).

    Google Scholar 

  26. C. Andersson, S. O. Andersson, J.-O. Liljenzin, H. Reinhardt, and J. Rydberg, Acta Chem. Scand. 23, 2781(1969).

    Google Scholar 

  27. H. Johansson and J. Rydberg, Acta Chem. Scand. 23, 2797(1969).

    Google Scholar 

  28. Y. Albinsson, L. E. Ohlsson, H. Persson, and J. Rydberg, Appl. Radiat. Isot. 39, 113(1988).

    Google Scholar 

  29. C. Ekberg, P. L. Brown, A. Ödegaard-Jensen, D. M. Hill, and A. Zawadzki, Anal. Bioanal. Chem. 374, 1330(2002).

    Google Scholar 

  30. A. Sabatini, A. Vacca and P. Gans, Talanta 21, 53(1974).

    Google Scholar 

  31. P. Gans, A. Sabatini, and A. Vacca, Inorg. Chim. Acta 18, 237(1976).

    Google Scholar 

  32. R. N. Sylva and M. R. Davidson, J. Chem. Soc. Dalton Trans. p. 232(1979).

  33. J. Bjerrum, Ph. D. dissertation, Haase and Son, Copenhagen, Denmark, 1941.

  34. C. Ekberg, G. Meinrath, A. Landgren, and J.-O. Liljenzin, in preparation.

  35. I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner, Chemical Thermodynamics of Uranium, (North-Holland, Amsterdam, (1992).

    Google Scholar 

  36. Yu. P. Davydov and V. N. Zabrodskii, Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk, 2, 3(1987).

    Google Scholar 

  37. B. Norén, Acta Chem. Scand. 27, 1369(1973).

    Google Scholar 

  38. V. I. Paramonova and A. N. Sergeev, Zh. Neorg. Khim. 3, 215(1958).

    Google Scholar 

  39. E. Curti, Paul Scherrer Institut Rep. TM-44-01-01, 2001.

  40. R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. H. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge, and H. Wanner, Chemical Thermodynamics of Neptunium and Plutonium (North-Holland, Amsterdam, 2001).

    Google Scholar 

  41. P. G. Daniele, C. Rigano, S. Sammartano, and V. Zelano, Talanta, 41, 1577(1994).

    Google Scholar 

  42. D. K. Nordstrom, L. N. Plummer, D. Langmuir, E. Busenburg, H. M. May, B. F. Jones, andD. L. Parkhurst, in Chemical Modelling of Aqueous Systems II, American Chemical Society Symposium Series No. 416, D. C. Melchor and R. L. Bassett, Eds. (American Chemical Society, Washington, DC, 1990), p. 398.

    Google Scholar 

  43. A. J. Zielen, University of California, Radiation Laboratory, Rep. UCRL-2268, 1953.

  44. P. L. Brown, J. Ellis, and R. N. Sylva, J. Chem. Soc. Dalton Trans. p. 31(1983).

  45. I. M. Korenman, F. R. Sheyanova, and Z. M. Gureva, Russ. J. Inorg. Chem. 11, 1485(1966).

    Google Scholar 

  46. J. Rydberg, Acta Chem. Scand. 14, 157(1960).

    Google Scholar 

  47. J.-O. Liljenzin and J. Stary, J. Inorg. Nucl. Chem. 32, 1357(1970).

    Google Scholar 

  48. M. A. Pouchon, E. Curti, C. Degueldre, and L. Tobler, Progr. Nucl. Energy 38, 443(2001).

    Google Scholar 

  49. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd edn. (Wiley, New York, 1972).

    Google Scholar 

  50. J. Bruno, D. Ferri, I. Grenthe, and F. Salvatore Acta Chem. Scand. 40, 428(1986).

    Google Scholar 

  51. D. Rai, J. L. Swanson, and J. L. Ryan, Radiochim. Acta 42, 35(1987).

    Google Scholar 

  52. D. Rai, Radiochim. Acta 35, 97(1984).

    Google Scholar 

  53. J. I. Kim, B. Kanellakopoulos, M. Mang, G. Herrmann, and H. Trautmann, Radiochim. Acta 48, 145(1989).

    Google Scholar 

  54. P. N. Kovalenko and K. N. Bagdasarov, Russ. J. Inorg. Chem. 6, 272(1961).

    Google Scholar 

  55. A. A. Slobodov, A. V. Kristskii, V. I. Zarembo, and L. V. Puchkov, Zh. Prikl. Khim. 65, 1031(1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekberg, C., Källvenius, G., Albinsson, Y. et al. Studies on the Hydrolytic Behavior of Zirconium(IV). Journal of Solution Chemistry 33, 47–79 (2004). https://doi.org/10.1023/B:JOSL.0000026645.41309.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000026645.41309.d3

Navigation