Skip to main content
Log in

Studies of Activity Coefficients for Ternary Systems: Water + 18-Crown-6 + Alkali Chlorides at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Osmotic vapor pressure measurements have been carried out for three ternary systems, H2O + 0.2 m 18-crown-6 + LiCl, H2O + 0.2 m 18-crown-6 + NaCl and H2O + 0.2 m 18-crown-6 + KCl at 298.15 K using vapor pressure osmometry. Water activities for each ternary system were measured and used to calculate the activity coefficients of 18-crown-6 (18C6) and its salts following the methodology developed by Robinson and Stokes for isopiestic measurements. In the concentration range studied, it was found that (in NaCl and KCl solutions) there is considerable lowering of activity coefficients of one component in the presence of other solutes that has been attributed to the formation of the complexed 18C6:Na+ (or 18C6:K+) species in solution. The Gibbs energies of transfer of alkali chlorides from water to aqueous 18C6 solutions and that of 18C6 from water to aqueous electrolyte solutions have been calculated. These were further used to evaluate the pair and triplet interaction parameters. The calculation of thermodynamic equilibrium constants using the pair interaction parameter, g NE (i.e., the nonelectrolyte–electrolyte pair interaction) for the studied complexation of cations yields values which are in good agreement with those reported in literature obtained by using ion-selective potentiometry and calorimetry. The results are discussed in terms of water structural effects, complex formation, and hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. J. Pedersen, J. Amer. Chem. Soc. 89, 2495(1967).

    Google Scholar 

  2. (a)M. Dobler, Chimica 38, 415(1984); (b)F. Vogtle, H. Sieger, and W. M. Mullar, Topics Current Chem. 98, 107(1981);(c)F. Vogtle, W. M. Mullar, and W. H. Watson, Topics Current Chem. 125, 131(1984).

    Google Scholar 

  3. D. J. Cram, Science 240, 760(1988).

    Google Scholar 

  4. K. J. Patil, S. R. Heil, M. Holz, and M. D. Zeidler, Ber. Bunsenges. Phys. Chem. 101, 91(1997).

    Google Scholar 

  5. K. J. Patil, T. M. Kirschgen, M. Holz, and M. D. Zeidler, J. Mol. Liq. 81, 201(1999).

    Google Scholar 

  6. K. J. Patil and R. B. Pawar, J. Phys. Chem. 103B, 2256(1999)

    Google Scholar 

  7. (a)K. J. Patil, R. B. Pawar, and G. S. Gokavi, J. Mol. Liq. 75, 143(1998);(b)R. B. Pawar, Ph.D. Thesis, Shivaji University, Kolhapur, India, 2002.

    Google Scholar 

  8. H. S. Harned and R. A. Robinson, Multicomponent Electrolyte Solutions (Pergamon Press, London, 1968).

    Google Scholar 

  9. F. J. Kelly, R. A. Robinson, and R. H. Stokes, J. Phys. Chem. 65, 1958(1961).

    Google Scholar 

  10. R. A. Robinson and R. H. Stokes, J. Phys. Chem. 66, 506(1962).

    Google Scholar 

  11. V. E. Bower and R. A. Robinson, J. Phys. Chem. 67, 1524(1963)

    Google Scholar 

  12. V. E. Bower and R. A. Robinson, J. Phys. Chem. 67, 1540(1963).

    Google Scholar 

  13. W. Y. Wen and C.-M. Chen, J. Phys. Chem. 73, 2895(1969).

    Google Scholar 

  14. R. A. Robinson and R. H. Stokes, J. Phys. Chem. 65, 1954(1961).

    Google Scholar 

  15. H. D. Ellerton and P. J. Dunlop, J. Phys. Chem. 70, 1831(1966)

    Google Scholar 

  16. J. E. Desnoyers, G. Perron, L. Avedikian, and J.-P. Morel, J. Solution Chem. 5, 631(1976).

    Google Scholar 

  17. M. Y. Schrier, P. J. Turner, and E. E. Schrier, J. Phys. Chem. 79, 1391(1975).

    Google Scholar 

  18. W. F. McDevit and F. A. Long, J. Amer. Chem. Soc. 74, 1773(1952).

    Google Scholar 

  19. W. L. Masterton and T. P. Lee, J. Phys. Chem. 74, 1776(1970).

    Google Scholar 

  20. R. Aveyard and R. Heselden, J. Chem. S. Faraday Trans. I 70, 1953(1974).

    Google Scholar 

  21. F. L. Wilcox and E. E. Schrier, J. Phys. Chem. 75, 3757(1971).

    Google Scholar 

  22. W. McMillan and J. Mayer, J. Chem. Phys. 13, 176(1945).

    Google Scholar 

  23. H. L. Freidman and C. V. Krishnan, in Water: A Comprehensive Treatise, Vol. III, F. Franks, ed. (Plenum Press, New York, 1973).

    Google Scholar 

  24. J. E. Desnoyers, M. Billon, S. Leyer, G. Perron, and J.-P. Morel, J. Solution Chem. 5, 681(1976).

    Google Scholar 

  25. C. V. Krishnan and H. L. Friedman, J. Solution Chem. 3, 849(1974).

    Google Scholar 

  26. W. Y. Wen and J. H. Hung, J. Phys. Chem. 74, 170(1970);(b)_R. Tenne and A. Ben-Naim, J. Phys. Chem. 80, 1120(1976).

    Google Scholar 

  27. K. Patil, R. Pawar, and D. Dagade, J. Phys. Chem. A 106, 9606(2002).

    Google Scholar 

  28. J. L. Fortier, P.-A. Leduc, and J. E. Desnoyers, J. Solution Chem. 3, 323(1974).

    Google Scholar 

  29. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn: (Butterworth, London, 1970).

    Google Scholar 

  30. H. K. Frensdorff, J. Amer. Chem. Soc. 93, 600(1971).

    Google Scholar 

  31. R. M. Izzat, R. E. Terry, B. L. Haymore, L. D. Hansen, N. H. Dally, A. Avondet, and J. J. Christensen, J. Amer. Chem. Soc. 98, 7620(1976).

    Google Scholar 

  32. Y. Takeda, M. Kanazawa, and S. Katsuta, Anal. Sci. 16, 929(2000).

    Google Scholar 

  33. C. Jolicouer, L. L. Lemelin, and R. Lapalme, J. Phys. Chem. 83, 2806(1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, K., Dagade, D. Studies of Activity Coefficients for Ternary Systems: Water + 18-Crown-6 + Alkali Chlorides at 298.15 K. Journal of Solution Chemistry 32, 951–966 (2003). https://doi.org/10.1023/B:JOSL.0000017060.21315.27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000017060.21315.27

Navigation