Skip to main content
Log in

Thermal and Alkaline Denaturation of Bovine β-Casein

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The secondary structure of bovine β-casein was characterized using circular dichroism (CD) and FTIR spectroscopies under physiologically relevant conditions. Analytical ultracentrifugation technique was used to follow the highly temperature, pH and concentration dependent self-association behavior. CD measurements provide convincing evidence for short segments of polyproline II-like structures in β-casein in addition to a wide range of secondary structure elements, such as 10–20% α-helix, ∼30% turns, 32–35% extended sheet. Results obtained at extreme pH (10.5) revealed structural destabilization in the monomeric form of the protein. At least four distinct structural transitions at 10, 33, 40 and 78°C were observed at pH 6.75 by CD analysis, compared to only two transitions, 26 and 40°C, at pH 10.5. Calculations from analytical ultracentrifugation suggest that the transitions at lower temperature (≤30°C) occur primarily in the monomer. It is hypothesized that the transition at 10°C and neutral pH may represent a general conformational change or cold denaturation. Those middle ranged transitions, i.e. 33 and 40°C are more likely the reflection of hydrophobic changes in the core of β-casein. As β-casein undergoes self-association and increases in size, the transition at higher temperature (78°C) is perhaps caused by the apparent conformational change within the micelle-like polymers. It has been shown that β-casein binds the hydrophobic fluorescent probe ANS with high affinity in much similar fashion to molten globular proteins. The effect of urea denaturation on the bound complex effectively supports this observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adzhubei, A. A., and Sternberg, M. J. E. (1993). J. Mol. Biol. 229: 472–493.

    Google Scholar 

  • Alaimo, M. H., Wickham, E. D., and Farrell, H. M., Jr. (1999). Biochim. Biophys. Acta 1431: 395–409.

    Google Scholar 

  • Andrews, A. L., Atkinson, D., Evans, M. T. A., Finer, E. G., Green, J. P., Phillips, M. C., et al. (1979). Biopolymers 18: 1105–1121.

    Google Scholar 

  • Bailey, R. W., Dunker, A. K., Brown, C. J., Garner, E. C., and Griswold, M. D. (2001). Biochemistry 40: 11828–11840.

    Google Scholar 

  • Buchheim, W., and Schmidt, D. G. (1979). J. Dairy Res. 46: 277–280.

    Google Scholar 

  • Byler, D. M., Farrell, H. M., Jr., and Susi, H. (1988). J. Dairy Sci. 71: 2622–2629.

    Google Scholar 

  • Caessens, P. W., De Jongh, H. H., Norde, W., and Gruppen, H. (1999). Biochim. Biophys. Acta 1430: 73–83.

    Google Scholar 

  • Chatchatee, P., Jarvinen, K. M., Bardina, L., Vila, L., Beyer, K., and Sampson, H. A. (2001). Clin. Exp. Allergy 31: 1256–1262.

    Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1978). Adv. Enzymol. Relat. Areas Mol. Biol. 47: 45–178.

    Google Scholar 

  • Cicuta, P., and Hopkinson, I. (2001). J. Chem. Phys. 114: 8659–8670.

    Google Scholar 

  • Creamer, L. K. (1980). Arch. Biochem. Biophys. 199: 172–178.

    Google Scholar 

  • Creamer, L. K., Richardson, T., and Parry, D. A. (1981). Arch. Biochem. Biophys. 211: 689–696.

    Google Scholar 

  • Curley, D. M., Kumosinski, T. F., Unruh, J. J., and Farrell, H. M., Jr. (1998). J. Dairy Sci. 81: 3154–3162.

    Google Scholar 

  • Dickinson, E., Semenova, M. G., Belyakova, L. E., Antipova, A. S., Il'in, M. M., Tsapkina, E. N., et al. (2001). J. Colloid Interface Sci. 239: 87–97.

    Google Scholar 

  • Dukor, R. K., and Keiderling, T. A. (1991). Biopolymers 31: 1747–1761.

    Google Scholar 

  • Dunker, A. K., and Obradovi, Z. (2001). Nat. Biotechnol. 19: 805–806.

    Google Scholar 

  • Dyson, H. J., and Wright, P. E. (2002). Adv Protein Chem 62: 311–340.

    Google Scholar 

  • Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Jr., Harwalkar, V. R., Jenness, R., et al. (1984). J. Dairy Sci. 67: 1599–1631.

    Google Scholar 

  • Farrell, H. M., Jr. (1999). In Encyclopedia of Reproduction, Volume 3 (Knobil, E. and Neill, J. D., ed.), Academic Press, Inc., San Diego, CA, pp. 256–263.

    Google Scholar 

  • Farrell, H. M., Jr., Kumosinski, T. F., Pulaski, P., and Thompson, M. P. (1988). Arch. Biochem. Biophys. 265: 146–158.

    Google Scholar 

  • Farrell, H. M., Jr., Deeney, J. T., Hild, E. K., and Kumosinski, T. F. (1990). J. Biol. Chem. 265: 17637–17643.

    Google Scholar 

  • Farrell, H. M., Jr., Qi, P. X., Wickham, E. D., and Unruh, J. J. (2002). J. Protein Chem. 21: 307–321.

    Google Scholar 

  • Farrell, H. M., Jr., Wickham, E. D., Unruh, J. J., Qi, P. X., and Hoagland, P. D. (2001). Food Hydrocolloids 15: 341–354.

    Google Scholar 

  • Farrell, H. M., Jr., Qi, P. X., Brown, E. M., Cooke, P. H., Tunick, M. H., Wickham, E. D., et al. (2002). J. Dairy Sci. 85: 459–471.

    Google Scholar 

  • Fragneto, G., Thomas, R. K., Rennie, A. R., and Penfold, J. (1995). Science 267: 657–660.

    Google Scholar 

  • Garnier, J. (1966). J. Mol. Biol. 19: 586–590.

    Google Scholar 

  • Graham, E. R. B., Malcolm, G. N., and McKenzie, H. A. (1984). Int. J. Biol. Macromol. 6: 155–161.

    Google Scholar 

  • Greenberg, R., Groves, M. L., and Dower, H. J. (1984). J. Biol. Chem. 259: 5132–5138.

    Google Scholar 

  • Grusby, M. J., Mitchell, S. C., Nabavi, N., and Glimcher, L. H. (1990). Proc. Natl. Acad. Sci. USA 87: 6897–6901.

    Google Scholar 

  • Herskovits, T. T. (1966). Biochemistry 5: 1018–1026.

    Google Scholar 

  • Holt, C., and Sawyer, L. (1993). J. Chem. Soc. Faraday Trans. 89: 2683–2692.

    Google Scholar 

  • Javor, G. T., Sood, S. M., Chang, P., and Slattery, C. W. (1991). Arch. Biochem. Biophys. 289: 39–46.

    Google Scholar 

  • Kawahara, K., and Tanford, C. (1966). J. Biol. Chem. 241: 3228–3232.

    Google Scholar 

  • Kay, B. K., Williamson, M. P., and Sudol, M. (2000). FASEB J. 14: 231–241.

    Google Scholar 

  • Kendrick, B. S., Dong, A., Allison, S. D., Manning, M. C., and Carpenter, J. F. (1996). J. Pharm. Sci. 85: 155–158.

    Google Scholar 

  • Krimm, S., and Bandekar, J. (1986). Adv. Protein Chem. 38: 181–364.

    Google Scholar 

  • Kumosinski, T. F., and Unruh, J. J. (1996). Talanta 43: 199–219.

    Google Scholar 

  • Kumosinski, T. F., Brown, E. M., and Farrell, H. M., Jr. (1993). J. Dairy Sci. 76: 931–945.

    Google Scholar 

  • Makarov, A. A., Lobachov, V. M., Adzhubei, I. A., and Esipova, N. G. (1992). FEBS Lett. 306: 63–65.

    Google Scholar 

  • McLachlan, C. N. (2001). Med. Hypotheses 56: 262–272.

    Google Scholar 

  • Noelken, M., and Reibstein, M. (1968). Arch. Biochem. Biophys. 123: 397–402.

    Google Scholar 

  • O'Connell, J. E., Grinberg, V. Y., and de Kruif, C. G. (2003). J. Colloid Interface Sci. 258: 33–39.

    Google Scholar 

  • Park, S. H., Shalongo, W., and Stellwagen, E. (1997). Protein Sci. 6: 1694–1700.

    Google Scholar 

  • Payens, T. A. J., and van Markwijk, B. W. (1963). Biochim. Biophys. Acta 71: 517–530.

    Google Scholar 

  • Pearce, K. N. (1975). Eur. J. Biochem. 58: 23–29.

    Google Scholar 

  • Plaxco, K. W., and Gross, M. (2001). Nat Struct Biol 8: 659–60.

    Google Scholar 

  • Provencher, S. W., and Glockner, J. (1981). Biochemstry 20: 33–37.

    Google Scholar 

  • Ptitsyn, O. B. (1995). Adv. Protein Chem. 47: 83–229.

    Google Scholar 

  • Qi, P. X., Wickham, E. D., Piotrowski, E. G., Fagerquist, C. K., and Farrell, H. M., Jr. (2004). Submitted for publication to Arch. Bichem. Biophys.

  • Rucker, A. L., and Creamer, T. P. (2002). Protein Sci. 11: 980–985.

    Google Scholar 

  • Rusling, J. F., and Kumosinski, T. F. (1996). In Nonlinear computer modeling of chemical and biochemical data, Academic Press, San Diego, CA.

    Google Scholar 

  • Schellman, J. A. (1990). Biophys. Chem. 37: 121–140.

    Google Scholar 

  • Schmidt, D. G. (1979). J. Dairy Res. 46: 351–355.

    Google Scholar 

  • Schmidt, D. G., and Payens, T. A. J. (1976). In Surface and Colloid Science, Volume 9 (Matijevic, E., ed.), John Wiley, New York, pp.165–199.

    Google Scholar 

  • Sreerama, N., and Woody, R. W. (1993). Anal. Biochem. 209: 32–44.

    Google Scholar 

  • Stapley, B. J., and Creamer, T. P. (1999). Protein Sci. 8: 587–595.

    Google Scholar 

  • Swaisgood, H. E. (1992). In Advanced Dairy Chemistry: Proteins (Fox, P. F., ed.), Elsevier Science Publishers, London, New York, pp. 63–111.

    Google Scholar 

  • Syme, C. D., Blanch, E. W., Holt, C., Jakes, R., Goedert, M., Hecht, L., et al. (2002). Eur. J. Biochem. 269: 148–156.

    Google Scholar 

  • Tai, M., and Kegeles, G. (1984). Biophys. Chem. 20: 81–87.

    Google Scholar 

  • Takase, K., Niki, R., and Arima, S. (1980). Biochim. Biophys. Acta 622: 1–8.

    Google Scholar 

  • Thompson, M. P. (1966). J. Dairy Sci. 49: 792–795.

    Google Scholar 

  • Thurn, A., Burchard, W., and Niki, R. (1987). Polymer Sci. 265: 653–666.

    Google Scholar 

  • Tiffany, M. L., and Krimm, S. (1968). Biopolymers 6: 1379–1382.

    Google Scholar 

  • Tompa, P. (2002). Trends Biochem. Sci. 27: 527–533.

    Google Scholar 

  • Torii, H., and Tasumi, M. (1998). J. Ramam Spectrosc. 29: 81–86.

    Google Scholar 

  • Toumadje, A., and Johnson, W. C., Jr. (1995). J. Am. Chem. Soc. 117: 7023–7024.

    Google Scholar 

  • Uversky, V. N. (2002). Eur. J. Biochem. 269: 2–12.

    Google Scholar 

  • Wahlgren, N. M., Dejmek, P., and Drakenberg, T. (1994). J. Dairy Res. 61: 495–506.

    Google Scholar 

  • Waugh, D. F., Creamer, L. K., Slattery, C. W., and Dresdner, G. W. (1970). Biochemistry 9: 786–795.

    Google Scholar 

  • Wilder, C. L., Friedrich, A. D., Potts, R. O., Daumy, G. O., and Francoeur, M. L. (1992). Biochemistry 31: 27–31.

    Google Scholar 

  • Wyman, J., Jr. (1964). Adv. Protein Chem. 19: 223–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, P.X., Wickham, E.D. & Farrell, H.M. Thermal and Alkaline Denaturation of Bovine β-Casein. J Protein Chem 23, 389–402 (2004). https://doi.org/10.1023/B:JOPC.0000039553.66233.3f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000039553.66233.3f

Navigation