Skip to main content
Log in

Effects of zinc binding on the structure and thermal stability of camel alpha-lactalbumin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interaction between zinc ion and camel alpha-lactalbumin (α-La) has been studied using different techniques of fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry, and differential scanning calorimetry (DSC). There are two sets of independent binding sites for Zn2+, two ions bind with the binding constant of 4.53 × 10M−1 and four ions with the binding constant of 963 M−1. The Protein-Zn2+complexation is an entropy-driven process. Circular dichroism studies do not show any significant change in the secondary structure of the protein after the binding of zinc ion on the α-La. The interaction leads to a conformational change of the protein and exposure of hydrophobic patches on α-Lato the solvent as observed in ANS fluorescence spectroscopy. DSC was applied to elucidate the effect of Zn2+ binding on the protein stability. Binding of Zinc ion to α-La induces a partially folded structure of protein. At the Zn2+/α-La molar ratio of 5 and 10, a mixture of native and partially folded structures is present. When the ratio reaches 20, all molecules adopt partially folded structure. Chemometric analysis confirmed the experimental results and provided insight into the process of denaturation of α-La via characterizing the native, intermediate, and denatured conformations in the presence of different concentrations of Zn2+ and different thermal conditions. Thermal stability of the partially folded structure of α-La in the presence of Zinc ion is lower than in the native protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Permyakov EA, Berliner LJ. Alpha-Lactalbumin: structure and function. FEBS Lett. 2000;473:269–74.

    Article  CAS  Google Scholar 

  2. Pettersson J, Mossberg AK, Svanborg C. Alpha-lactalbumin species variation, HAMLET formation, and tumor cell death. Biochem Biophys Res Commun. 2006;345:260–70.

    Article  CAS  Google Scholar 

  3. Bushmarina NA, Blanchet CE, Vernier G, Forge V. Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions. Protein Sci. 2006;15:659–71.

    Article  CAS  Google Scholar 

  4. Noyelle K, Van Dael H. Kinetics of conformational changes induced by the binding of various metal ions to bovine alpha-lactalbumin. J Inorg Biochem. 2002;88:69–76.

    Article  CAS  Google Scholar 

  5. Berliner LJ, Ellis PD, Murakami K. Manganese(II) electron spin resonance and cadmium-113 nuclear magnetic resonance evidence for the nature of the calcium binding site in α-lactalbumins? Biochemistry. 1983;22:5061–3.

    Article  CAS  Google Scholar 

  6. Veprintsev DB, Permyakov EA, Kalinichenko LP, Berliner LJ. Pb2+ and Hg2+ binding to alpha-lactalbumin. Biochem Mol Biol Int. 1996;39:1255–65.

    CAS  Google Scholar 

  7. Permyakov SE, Veprintsev DB, Brooks CL, Permyakov EA, Berliner LJ. Zinc binding in bovine alpha-lactalbumin: sequence homology may not be a predictor of subtle functional features. Proteins. 2000;40:106–11.

    Article  CAS  Google Scholar 

  8. Ren JS, Stuart DI, Acharya KR. Alpha-lactalbumin possesses a distinct zinc-binding site. J Biol Chem. 1993;268:19292–8.

    CAS  Google Scholar 

  9. Tanaka N, Shigerru K. Influence of zinc (II) binding on the structure of bovine α-lactalbumin. Int J Pept Protein Res. 1996;47:154–60.

    Article  CAS  Google Scholar 

  10. Murakami K, Berliner LJ. A distinct zinc binding site in the α-lactalbumins regulates calcium binding. Is there a physiological role for this control? Biochemistry. 1983;22:3370–4.

    Article  CAS  Google Scholar 

  11. Griko YV, Remeta DP. Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin. Protein Sci. 1999;8:554–61.

    Article  CAS  Google Scholar 

  12. Housaindokht MR, Chamani J, Moosavi-Movahedi AA. A differential scanning calorimetric study of the influence of copper and dodecyl trimethyl ammonium bromide on the stability of bovine alpha-lactalbumin. Int J Biol Macromol. 2005;36:169–75.

    Article  CAS  Google Scholar 

  13. Thoppil AA, Kishore N. Equimolar mixture of 2,2,2-trifluoroethanol and 4-chloro-1-butanol is a stronger inducer of molten globule state: isothermal titration calorimetric and spectroscopic studies. Protein J. 2007;26:507–16.

    Article  CAS  Google Scholar 

  14. Elagamy EI. Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: a comparison with cows’ and buffalo milk proteins. Food Chem. 2000;68:227–32.

    Article  CAS  Google Scholar 

  15. Atri MS, Saboury AA, Yousefi R, Dalgalarrondo M, Chobert JM, Haertle´ T, Moosavi-Movahedi AA. Comparative study on heat stability of camel and bovine apo and holo α-lactalbumin. J Dairy Res. 2010;77:43–9.

    Article  CAS  Google Scholar 

  16. Wold S. Chemometrics; what do we mean with it, and what do we want from it? Chemom Intell Lab Syst. 1995;30:109–15.

    Article  CAS  Google Scholar 

  17. McLennan F, McLennan F, Kowalski BR. Process analytical chemistry in perspective. Glasgow: Blackie Academic and Professional; 1995. p. 1–13.

    Book  Google Scholar 

  18. De Juan A, Tauler R. Chemometrics applied to unravel multi component processes and mixtures: revisiting latest trends in multivariate resolution. Anal Chim Acta. 2003;500:195–210.

    Article  Google Scholar 

  19. Tauler R. Multivariate curve resolution applied to second order data. Chemom Intell Lab Syst. 1995;30:133–46.

    Article  CAS  Google Scholar 

  20. Navea S, de Juan A, Tauler R. Detection and resolution of intermediate species in protein folding processes using fluorescence and circular dichroism spectroscopies and multivariate curve resolution. Anal Chem. 2002;64:6031–9.

    Article  Google Scholar 

  21. Navea S, de Juan A, Tauler R. Modeling temperature-dependent protein structural transitions by combined near-IR and mid-IR spectroscopies and multivariate curve resolution. Anal Chem. 2003;75:5592–601.

    Article  CAS  Google Scholar 

  22. Tauler R, Izquierdo-Ridorsa A, Casassas E. Simultaneous analysis of several spectroscopic titrations with self-modelling curve resolution. Chemom Intell Lab Syst. 1993;18:293–300.

    Article  CAS  Google Scholar 

  23. Tauler R. Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution. J Chemom. 2001;15:627–46.

    Article  CAS  Google Scholar 

  24. Lawton WH, Sylvestre EA. Self modeling curve resolution. Technometrics. 1971;13:617–33.

    Article  Google Scholar 

  25. Ariaeenejad S, Habibi-Rezaei M, Kavousi K, Jamili S, Fatemi MR, Hong J, Poursasan N, Sheibani N, Moosavi-Movahedi AA. Denaturation and intermediates study of two sturgeon hemoglobins by n-dodecyl trimethylammonium bromide. Int J Biol Macromol. 2013;53:107–13.

    Article  CAS  Google Scholar 

  26. Sta˘nciuc N, Râpeanu G, Bahrim G, Aprodu I. pH and heat-induced structural changes of bovine apo-α-lactalbumin. Food Chem. 2012;131:956–63.

    Article  Google Scholar 

  27. Kelkar DA, Chaudhuri A, Haldar S, Chattopadhyay A. Exploring tryptophan dynamics in acid-induced molten globule state of bovine alpha-lactalbumin: a wavelength-selective fluorescence approach. Eur Biophys J Biophy. 2010;39:1453–63.

    Article  CAS  Google Scholar 

  28. Kapp EA, Daya S, Whiteley CG. Protein-ligand interactions: interaction of nitrosamines with nicotinic acetylcholine receptor. Biochem Biophys Res Commun. 1990;167:1383–92.

    Article  CAS  Google Scholar 

  29. Sil S, Chakraborti AS. Hematoporphyrin interacts with myoglobin and alters its functions. Mol Cell Biochem. 2002;237:103–10.

    Article  CAS  Google Scholar 

  30. Dan F, Hamedi MH, Grolier JE. New developments and applications in titration calorimetry and reaction calorimetry. J Therm Anal Calorim. 2006;85(3):531–40.

    Article  CAS  Google Scholar 

  31. Rezaei Behbehani G, Saboury AA, Yahaghi E. A thermodynamic study of nickel ion interaction with bovine carbonic anhydrase II molecule. J Therm Anal Calorim. 2010;100:283–8.

    Article  Google Scholar 

  32. Chu HL, Chen TH, Wu CY, Yang YC, Tseng SH, Cheng TM, Ho LP, Tsai LY, Li H, Chang CS, Chang CC. Thermal stability and folding kinetics analysis of disordered protein, securing. J Therm Anal Calorim. 2014;115:2171–8.

    Article  CAS  Google Scholar 

  33. Van Dael H, Chedad A. An equilibrium and a kinetic stopped-flow fluorescence study of the binding of various metal ions to goat alpha-lactalbumin. J Fluoresc. 2006;16:361–5.

    Article  Google Scholar 

  34. Permyakov EA, Shnyrov VL, Kalinichenko LP, Kuchar A, Reyzer IL, Berliner LJ. Binding of Zn (II) ions to α-lactalbumin. J Protein Chem. 1991;10:577–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maliheh Sadat Atri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atri, M.S., Saboury, A.A., Moosavi-Movahedi, A.A. et al. Effects of zinc binding on the structure and thermal stability of camel alpha-lactalbumin. J Therm Anal Calorim 120, 481–488 (2015). https://doi.org/10.1007/s10973-014-4274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4274-5

Keywords

Navigation