Skip to main content
Log in

Comparison of Molecular Dynamics Averaged Structures for Complexes of Normal and Oncogenic ras-p21 with SOS Nucleotide Exchange Protein, Containing Computed Conformations for Three Crystallographically Undefined Domains, Suggests a Potential Role of These Domains in ras Signaling

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

ras-p21 protein binds to the son-of-sevenless (SOS) guanine nucleotide-exchange promoter that allows it to exchange GDP for GTP. Previously, we performed molecular dynamics calculations on oncogenic (Val 12-) and wild-type ras-p21 bound to SOS. By superimposing the average structures of these two complexes, we identified four domains (residues 631–641, 676–691, 718–729, and 994–1004) in SOS that change conformation and were candidates for being effector domains. These calculations were performed in the absence of three crystallographically undefined loops (i.e., residues 591–596, 654–675, and 742–751). We have now modeled these loops into the SOS structure and have re-performed the dynamics calculations. We find that all three loop domains undergo large changes in conformation that involve mostly changes in their positioning and not their individual conformations. We have also identified another potential effector domain (i.e., residues 980–989). Overall, our current results suggest that SOS interactions with oncogenic ras-p21 may enhance ras-p21 mitogenic signaling through prolonging its activation by maintaining its binding to GTP and by allowing its effector domains to interact with intracellular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abola, E. E., Bernstein, F. C., Bryant, S. H., Koetzle, T. F., and Weng, J. (1987). In: Allen, F. H., Bergerhoff, G., and Sievers, R., eds. Crystallographic Data Bases-Information Content, Software Systems, Scientific Applications, Data Commission of the International Union of Crystallography, Bonn, Cambridge, Chester, UK, pp. 107–132.

    Google Scholar 

  • Adler, V., Pincus, M. R., Brandt-Rauf, P. W., and Ronai, Z. (1995). Proc. Natl. Acad. Sci. U. S. A. 92: 10585–10589.

    PubMed  Google Scholar 

  • Adler, V., Pincus, M. R., Polotskaya, A., Montano, X., Friedman, F., and Ronai, Z. (1996). J. Biol. Chem. 271: 23304–23309.

    Google Scholar 

  • Altschul et al. (1997). Nucleic Acids Res. 25: 3389–3402.

    Google Scholar 

  • Amar, S., Glozman, A., Chung, D. L., Alder, V., Ronai, Z., Friedman, F. K., et al. (1997). Cancer Chemother. Pharmacol. 41: 79–85.

    Google Scholar 

  • Barbacid, M. (1987). Ann. Rev. Biochem. 56: 779–827.

    Google Scholar 

  • Birchmeier, C., Broek, D., and Wigler, M. (1985). Cell 43: 615–621.

    PubMed  Google Scholar 

  • Boriak-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuriyan, J. (1998). Nature (London) 394: 337–343.

    Google Scholar 

  • Chardin, P., Camonis, J. H., Gale, N. W., Van Aelst, L., Schlessinger, J., Wigler, M. H., et al. (1993). Science 260: 1338–1343.

    PubMed  Google Scholar 

  • Chen, J. M., Monaco, R., Manolatos, S., Brandt-Rauf, P. W., Friedman, F. K., and Pincus, M. R. (1997) J. Protein Chem. 16: 631–635.

    PubMed  Google Scholar 

  • Chen, J. M., Friedman, F. K., Hyde, M. J., Monaco, R., and Pincus, M. R. (1999). J. Protein Chem. 18: 867–874.

    PubMed  Google Scholar 

  • Chen, J. M., Friedman, F. K., Brandt-Rauf, P. W., and Pincus, M. R. (2002). J. Protein Chem. 21: 349–359.

    PubMed  Google Scholar 

  • Chie, L., Chen, J. M., Friedman, F. K., Chung, D. L., Amar, S. Michl, J., et al. 1999. J. Protein Chem. 18: 875–879.

    PubMed  Google Scholar 

  • Crennell, S., Garman, E., Laver, G., Vimr, E., and Taylor, G. (1994). Structure 2: 535---.

    PubMed  Google Scholar 

  • Deshpande, A. K., and Kung, H.–F. (1987) Mol. Cell. Biol. 7: 1285–1288.

    PubMed  Google Scholar 

  • Fiser, A., Do, R. K., and Sali, A. (2000). Protein Sci. 9: 1753–1773.

    PubMed  Google Scholar 

  • Friedman, F. K., Chie, L., Chung, D. L., Robinson, R., Brandt-Rauf, P. W., Yamaizumi, Z., et al. (2002). J. Protein Chem. 21: 361–366.

    PubMed  Google Scholar 

  • Krengel, U., Schlichting, L., Scherer, A., Schumann, R., Frech, M., John, J., et al. (1990). Cell 62: 539–548.

    PubMed  Google Scholar 

  • Liwo, A., Gibson, K. D., Scheraga, H. A., Brandt-Rauf, P. W., Monaco, R., and Pincus, M. R. (1994) J. Protein Chem. 13: 237–251.

    PubMed  Google Scholar 

  • Monaco, R., Chen, J. M., Chung, D. L., Brandt-Rauf, P. W., and Pincus, M. R. (1995a). J. Protein Chem. 14: 457–466.

    PubMed  Google Scholar 

  • Monaco, R., Chen, J. M., Friedman, F. K., Brandt-Rauf, P. W., and Pincus, M. R. (1995b). J. Protein Chem. 14: 721–730.

    PubMed  Google Scholar 

  • Nassar, N., Horn, G., Herrmann, C., Scherer, A., McC, F., and Wittinghofer, A. (1995). Nature (London) 375: 554–560.

    Google Scholar 

  • Pincus, M. R., Brandt-Rauf, P. W., Michl, J., and Friedman, F. K. (2000). Cancer Invest. 46: 35–53.

    Google Scholar 

  • Pincus, M. R., Brandt-Rauf, P. W., Koslosky, W., and Appruzzese, W. (2001). In: Henry, J. B.(ed.), Clinical Diagnosis and Management by Laboratory Methods, Nineteenth Edition, W.B. Saunders, Philadelphia, 1344–1354.

    Google Scholar 

  • Sali, A., and Blundell, T. L. (1993). J. Mol. Biol. 234: 779–815.

    PubMed  Google Scholar 

  • Scheffzek, K., Ahmadian, M. R., Kabsch, W., Weismuller, L., Lautwein-Schmitz, F., and Wittinghofer, A. (1997). Science 227: 333–338.

    Google Scholar 

  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, V. C., Ghio, C., Alagona, G., et al. (1986). J. Am. Chem. Soc. 106: 765–784.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, T., Chen, J.M., Friedman, F.K. et al. Comparison of Molecular Dynamics Averaged Structures for Complexes of Normal and Oncogenic ras-p21 with SOS Nucleotide Exchange Protein, Containing Computed Conformations for Three Crystallographically Undefined Domains, Suggests a Potential Role of These Domains in ras Signaling. J Protein Chem 23, 217–228 (2004). https://doi.org/10.1023/B:JOPC.0000026417.72621.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000026417.72621.1f

Navigation