Skip to main content
Log in

Funastrain c II: A Cysteine Endopeptidase Purified from the Latex of Funastrum clausum

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A cysteine endopeptidase, named funastrain c II, was isolated and characterized from the latex of Funastrum clausum (Asclepiadaceae). The molecular mass (mass spectrometry) of the protease was 23.636 kDa. The analysis of funastrain c II by SDS-PAGE revealed a single polypeptide chain. The enzyme showed a remarkable stability of its caseinolytic activity after incubation at temperatures as high as 70°C. Inhibition and activation assays indicated the cysteinic nature of the funastrain c II catalytic site. The optimum pH of funastrain c II enzymatic activity varied according to the substrate used (9.0–10.0 for casein and 6.2–6.8 for PFLNA). Kinetic parameters were determined for N-α-CBZ-Ala p-nitrophenyl ester (K m = 0.0243 mM, k cat = 1.5 s−1) and l-pyroglutamyl-l-phenylalanyl-l-leucine-p-nitroanilide (PFLNA; K M = 0.1011 mM, k cat = 0.9 s−1). The N-terminal sequence of funastrain c II showed considerable similarity to other proteases isolated from latex of different Asclepiadaceae species as well as to other cysteine proteinases belonging to the papain family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, K. I., and Joshi, P. N. (1979a). Biochim. Biophys. Acta 568: 111–119.

    PubMed  Google Scholar 

  • Abraham, K. I., and Joshi, P. N. (1979b). Biochim. Biophys. Acta 568: 120–126.

    PubMed  Google Scholar 

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Res. 25: 3389–3402. http://www.ncbi.nlm.nih.gov/blast.

    PubMed  Google Scholar 

  • Arribére, M. C., Cortadi, A. A., Gattuso, M. A., Bettiol, M. P., Priolo, N. S., and Caffini, N. O. (1998). Phytochem. Anal. 9: 267–273.

    Google Scholar 

  • Baker, E. N., and Drenth, J. (1987). In: Jurnak, F., and McPherson, A. R. (eds.), Biological Macromolecules and Assemblies, John Wiley & Sons, New York, pp. 313–368.

    Google Scholar 

  • Barberis, S., Quiroga, E., Arribére, M. C., and Priolo, N. S. (2000). J. Mol. Catal. B Enzym. 17: 39–47.

    Google Scholar 

  • Barragán, B. E., Cruz, M. T., del Castillo, L. M., and Castañeda-Agulló, M. (1985). Rev. Latinoamer. Quím. 16: 117–119.

    Google Scholar 

  • Barret, A. J. (1998). In: Barret, A. J., Rawlings, N. D., and Wocasner, J. F. (eds.), Handbook of Proteolytic Enzymes, Academic Press, London, pp. 546–555.

    Google Scholar 

  • Barret, A. (2001). In: Beynon, R., and Bond, J. S. (eds.), Proteolytic Enzymes, Second Edition, Oxford University Press, Oxford, pp. 12–17.

    Google Scholar 

  • Barret, A. J., Kembhavi, A., Brown, M., Kirschke, H., Knight, C. G., Tamai, M., et al. (1982). Biochem. J. 201: 189–198.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). Anal. Biochem. 72: 248–254.

    PubMed  Google Scholar 

  • Brockbank, W. J., and Lynn, K. R. (1979). Biochim. Biophys. Acta. 578: 113–122.

    Google Scholar 

  • Carpenter, D. C., and Lovelace, F. E. (1943). J. Am. Chem. Soc. 65: 2364–2365.

    Google Scholar 

  • Clapés, P., Torres, J. L., and Aldercreutz, P. (1995). Bioorg. Med. Chem. 3: 245–255.

    PubMed  Google Scholar 

  • Conliffe, P. R., Ogilvie, S., Simmen, R. C., Michel, F. J., Saunders, P., and Shiverick, K. T. (1995). Mol. Reprod. Dev. 40: 146–156.

    PubMed  Google Scholar 

  • Dubey, K. V., and Jagannadham, M. V. (2003). Phytochemistry 62: 1057–1071.

    PubMed  Google Scholar 

  • Dubois, T., Kleinschmidt, T., Schenk, A. G., Looze, Y., and Braunitzer, G. (1988). Biol. Chem. Hoppe-Seyler 369: 741–754.

    PubMed  Google Scholar 

  • Englund, P. T., King, T. P., Craig, L. C., and Walti, A. (1968). Biochemistry 7: 163–175.

    PubMed  Google Scholar 

  • Filippova, I. Yu., Lysogorskaya, E. N., Oksenoit, E. S., Rudenskaya, G. N., and Stepanov, V. M. (1984). Anal. Biochem. 143: 293–297.

    PubMed  Google Scholar 

  • Glaizer, A. N., and Smith, E. L. (1971). In: Boyer, P. D. (ed.), The Enzymes, Academic Press, New York, Vol. III, pp. 501.

    Google Scholar 

  • Good, N. E., and Izawa, S. (1972). Meth. Enzymol. 24: 53–68.

    PubMed  Google Scholar 

  • Gravina de Moraes, M., Termignoni, C., and Salas, C. (1994). Plant Science 102: 11–18.

    Google Scholar 

  • Greenberg, D. M., and Winnick, T. (1940). J. Biol. Chem. 135: 775–780.

    Google Scholar 

  • Hansson, A., Veliz, G., Naquira, C. Amren, M. Arroyo, M., and Arevalo, G. (1986). J. Ethnopharmacology 17: 105–138.

    Google Scholar 

  • Jones, I. K., and Glazer, A. N. (1970). J. Biol. Chem. 245: 2765–2772.

    PubMed  Google Scholar 

  • Joseph, L. J., Chang, L. C., Stamenkovich, D., and Sukhatme, V. P. (1988). J. Clin. Invest. 81: 1621–1629.

    PubMed  Google Scholar 

  • Kelly, G. (1996). Altern. Med. Rev. 1: 243–257.

    Google Scholar 

  • Koehler, S. M., and Ho, T. H. (1990). Plant Cell. 2: 769–783.

    PubMed  Google Scholar 

  • Kortt, A. A., Hamilton, S., Weeb, E. C., and Zerner, B. (1974a). Biochemistry 13: 2023–2028.

    PubMed  Google Scholar 

  • Kortt, A. A., Hinds, J. A., and Zerner, B. (1974b). Biochemistry 13: 2029–2037.

    PubMed  Google Scholar 

  • Kramer, D. E., and Whitaker, J. R. (1964). J. Biol. 239: 2178–2183.

    Google Scholar 

  • Krišstofiková, Z., and Klaschka, J. (1999). Physiol. Res. 48( Suppl. 1): S87.

    Google Scholar 

  • Kundu, S., Sundd, M., and Medicherla, V. J. (2000). J. Agric. Food Chem. 48: 171–179.

    PubMed  Google Scholar 

  • Lynn, K. R., and Yaguchi, M. (1979). Biochim. Biophys. Acta 581: 363–4.

    PubMed  Google Scholar 

  • Lynn, K. R., Brockbank, W. J., and Clevette, N. A. (1980). Biochim. Biophys. Acta 612: 119–125.

    PubMed  Google Scholar 

  • Mitchel, R. E., Chaiken, I. M., and Smith, E. L. (1970). J. Biol. Chem. 245: 3485–3492.

    PubMed  Google Scholar 

  • Obregón, W. D., Arribére, M. C., Morcelle del Valle, S., Liggieri, C., Caffini, N. O., and Priolo, N. S. (2001). J. Protein Chem. 20: 17–25.

    Google Scholar 

  • Okamura, N., Tamba, M., Uchiyama, Y., Sugita, Y., Dacheux, F., Syntin, P., et al. (1995). Biochim. Biophys. Acta 1245: 221–226.

    PubMed  Google Scholar 

  • Pal, G., and Sinha, N. K. (1980). Biochem. Biophys. 202: 321–329.

    Google Scholar 

  • Perelló, M., Arribére, M. C., Caffini, N. O., and Priolo, N. S. (2000). Acta Farm. Bonaerense 19: 257–262.

    Google Scholar 

  • Portnoy, D. A., Erickson, A. H., Kochan, J., Ravetch, J. V., and Unkeless, J. C. (1986). J. Biol. Chem. 261: 14697–14703.

    PubMed  Google Scholar 

  • Priolo, N. S., López, L. M. I., Arribére, M. C., Natalucci, C. L., and Caffini, N. O. (1991). Acta Alimentaria 20: 189–196.

    Google Scholar 

  • Priolo, N., Morcelle del Valle, S., Arribére, M. C., López, L. M. I., and Caffini, N. (2000). J. Protein Chem. 19: 39–49.

    PubMed  Google Scholar 

  • Robinson, G. W. (1975). Biochemistry 14: 3695–700.

    PubMed  Google Scholar 

  • Salvesen, G. S., and Nagase, H. (2001). In: Beynon, R. and Bond, J. S. (eds.), Proteolytic Enzymes, Second Edition, Oxford University Press, Oxford, pp. 116–119.

    Google Scholar 

  • Schaffer, A. A., Wolf, Y. I., Ponting, C. P., Koonin, E. V., Aravind, L., and Altschult, S. F. (1999). Bioinformatics 15: 1000–1011.

    PubMed  Google Scholar 

  • Sengupta, A., Bhattacharya, D., Pal, G., and Sinha, N. K. (1984). Biochem. Biophys. 232: 17–25.

    Google Scholar 

  • Sgarbieri, V. C., Gupte, S. M., Kramer, D. E., and Whitaker, J. R. (1964). Biol. Chem. 239: 2170–2177.

    Google Scholar 

  • Shägger, H., and von Jagow, G. (1987). Anal. Biochem. 166: 368–379.

    PubMed  Google Scholar 

  • Silverstein, R. M. (1974). Anal. Biochem. 62: 478–484.

    PubMed  Google Scholar 

  • Sugiura, M., and Sasaki, M. (1974). Biochem. Biophys. Acta 350: 38–47.

    PubMed  Google Scholar 

  • Tablero, M., Arreguín, R., Arreguín, B., Soriano, M., Sánchez, R. I., Rodríguez Romero, A., et al. (1991). Plant Sci. 74: 7–15.

    Google Scholar 

  • Tatusova, T. A., and Madden, T. L. (1999). FEMS Microbiol. Lett. 174: 247–250; http://embnet.cifn.unam.mx/blast/wblast2.html.

    PubMed  Google Scholar 

  • Trejo, S. A., López, L. M. I, Cimino, C. V., Caffini, N. O., and Natalucci, C. L. (2001). J. Protein Chem. 20: 445–453.

    Google Scholar 

  • Turk, B., Turk, V., and Turk, D. (1997). Biol. Chem. 378: 141–150.

    PubMed  Google Scholar 

  • Uhlig, H. (1998). In: Industrial Enzymes and Their Applications. John Wiley & Sons, New York, pp. 146–147.

    Google Scholar 

  • Vairo Cavalli, S. E., Cortadi, A., Arribére, M. C., Conforti, P., Caffini, N. O., and Priolo, N. S. (2001). Biol. Chem. Hoppe-Seyler 382: 879–883.

    Google Scholar 

  • Vairo Cavalli, S., Arribére, M. C., Cortadi, A., Caffini, N. O., and Priolo, N. S. (2003). J. Protein Chem. 22: 15–22.

    PubMed  Google Scholar 

  • Watanabe, H., Abe, K., Emori, Y., Hosoyama, H., and Arai, S. (1991). J. Biol. Chem. 266: 16897–16902.

    PubMed  Google Scholar 

  • Westergaard, J. L., Hackbarth, C., Treuhaft, M. W., and Roberts, R. C. (1980). J. Immunol. Methods 34: 167–175.

    PubMed  Google Scholar 

  • Williams, D. C., and Whitaker, J. R. (1969). Plant Physiol. 44: 1574–83.

    Google Scholar 

  • Winnick, T., Davis, A. R., and Greenberg, D. M. (1940). J. Gen. Physiol. 23: 275–288.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morcelle, S.R., Trejo, S.A., Canals, F. et al. Funastrain c II: A Cysteine Endopeptidase Purified from the Latex of Funastrum clausum . J Protein Chem 23, 205–215 (2004). https://doi.org/10.1023/B:JOPC.0000026416.90134.7b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000026416.90134.7b

Navigation