Skip to main content
Log in

ATM and Genome Maintenance: Defining Its Role in Breast Cancer Susceptibility

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The ATM gene is mutated in ataxia-telangiectasia (A-T), a genetic instability syndrome characterized by increased cancer risk, as well as other features. Recent studies have shown that the ATM protein kinase plays a critical role in maintaining genome integrity by activating a biochemical chain reaction that in turn leads to cell cycle checkpoint activation and repair of DNA damage. ATM targets include well-known tumor suppressor genes such as p53 and BRCA1, both of which play an important role in predisposition to breast cancer. Studies of A-T families have consistently reported an increased risk of breast cancer in women with one mutated ATM gene, but so far an increased frequency of ATM mutations has not been found in women with breast cancer. Some specific missense and protein truncating variants of ATM have been reported to confer increased breast cancer risk, but the magnitude of this risk remains uncertain. A more comprehensive analysis of ATM is needed in large case-control studies, and in multiple-case breast cancer families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. K. Khanna, and S. P. Jackson (2001). DNA double-strand breaks: Signaling, repair and the cancer connection. Nat. Genet. 27:247-254.

    Google Scholar 

  2. K. Savitsky, M. Platzer, T. Uziel, S. Gilad, A. Sartiel, A. Rosenthal, O. Elroy-Stein, Y. Shiloh, and G. Rotman (1997). Ataxia-telangiectasia: Structural diversity of untranslated sequences suggests complex posttranscriptional regulation of ATM gene expression. Nucleic Acids Res. 25:1678- 1684.

    Google Scholar 

  3. C. Barlow, S. Hirotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins, Y. Shiloh, J. N. Crawley, T. Ried, D. Tagle, and A. Wynshaw-Boris (1996). Atm-deficient mice: A paradigm of ataxia telangiectasia. Cell 86:159-171.

    Google Scholar 

  4. Y. Xu, T. Ashley, E. E. Brainerd, R. T. Bronson, M. S. Meyn, and D. Baltimore (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma [see comments]. Genes. Dev. 10:2411-2422.

    Google Scholar 

  5. A. Elson, Y. Wang, C. J. Daugherty, C. C. Morton, F. Zhou, J. Campos-Torres, and P. Leder (1996). Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 93:13084-13089.

    Google Scholar 

  6. K. K. Khanna, M. F. Lavin, S. P. Jackson, and T. D. Mulhern (2001). ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8:1052-1065.

    Google Scholar 

  7. V. A. Zakian (1995). ATM-related genes: What do they tell us about functions of the human gene? Cell 82:685- 687.

    Google Scholar 

  8. M. F. Lavin, K. K. Khanna, H. Beamish, K. Spring, D. Watters, and Y. Shiloh (1995). Relationship of the ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase. Trends Biochem. Sci. 20:382-383.

    Google Scholar 

  9. S. P. Lees-Miller, K. Sakaguchi, S. J. Ullrich, E. Appella, and C. W. Anderson (1992). Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell Biol. 12:5041-5049.

    Google Scholar 

  10. T. O'Neill, A. J. Dwyer, Y. Ziv, D. W. Chan, S. P. Lees-Miller, R. H. Abraham, J. H. Lai, D. Hill, Y. Shiloh, L. C. Cantley, and G. A. Rathbun (2000). Utilization of ori-ented peptide libraries to identify substrate motifs selected by ATM. J. Biol. Chem. 275:22719-22727.

    Google Scholar 

  11. S. T. Kim, D. S. Lim, C. E. Canman, and M. B. Kastan (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274:37538-37543.

    Google Scholar 

  12. R. G. Martinho, H. D. Lindsay, G. Flaggs, A. J. DeMaggio, M. F. Hoekstra, A. M. Carr, and N. J. Bentley (1998). Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. Embo. J. 17:7239-7249.

    Google Scholar 

  13. J. C. Mallory, and T. D. Petes (2000). Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl. Acad. Sci. U. S. A. 97:13749-13754.

    Google Scholar 

  14. R. T. Abraham (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177- 2196.

    Google Scholar 

  15. Y. Shiloh (2003). ATM and related protein kinases: safe-guarding genome integrity. Nat. Rev. Cancer 3:155-168.

    Google Scholar 

  16. M. B. Kastan, D. S. Lim, S. T. Kim, and D. Yang (2001). ATM-A key determinant of multiple cellular responses to irradiation. Acta. Oncol. 40:686-688.

    Google Scholar 

  17. L. Zou, and S. J. Elledge (2003). Sensing DNA dam-age through ATRIP recognition of RPA-ssDNA com-plexes. Science 300:1542-1548.

    Google Scholar 

  18. C. J. Bakkenist, and M. B. Kastan (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499-506.

    Google Scholar 

  19. C. Lukas, J. Falck, J. Bartkova, J. Bartek, and J. Lukas (2003). Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell. Biol. 5:255-260.

    Google Scholar 

  20. T. Uziel, Y. Lerenthal, L. Moyal, Y. Andegeko, L. Mittelman, and Y. Shiloh (2003). Requirement of the MRN complex for ATM activation by DNA damage. Embo. J. 22:5612- 5621.

    Google Scholar 

  21. C. T. Carson, R. A. Schwartz, T. H. Stracker, C. E. Lilley, D. V. Lee, and M. D. Weitzman (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. Embo. J. 22:6610-6620.

    Google Scholar 

  22. S. J. Kuerbitz, B. S. Plunkett, W. V. Walsh, and M. B. Kastan (1992). Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. U.S.A. 89:7491-7495.

    Google Scholar 

  23. M. B. Kastan, Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace Jr. (1992). A mammalian cell cycle checkpoint pathway uti-lizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587-97.

    Google Scholar 

  24. K. K. Khanna, and M. F. Lavin (1993). Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8:3307-3312.

    Google Scholar 

  25. Y. Haupt, R. Maya, A. Kazaz, and M. Oren (1997). Mdm2 promotes the rapid degradation of p53. Nature 387:296- 299.

    Google Scholar 

  26. M. H. Kubbutat, and K. H. Vousden (1998). Keeping an old friend under control: Regulation of p53 stability. Mol. Med. Today 4:250-256.

    Google Scholar 

  27. S. Banin, L. Moyal, S. Shieh, Y. Taya, C. W. Anderson, L. Chessa, N. I. Smorodinsky, C. Prives, Y. Reiss, Y. Shiloh, and Y. Ziv (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674-1677.

    Google Scholar 

  28. C. E. Canman, D. S. Lim, K. A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M. B. Kastan, and J. D. Siliciano (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677-1679.

    Google Scholar 

  29. K. K. Khanna, K. E. Keating, S. Kozlov, S. Scott, M. Gatei, K. Hobson, Y. Taya, B. Gabrielli, D. Chan, S. P. Lees-Miller, and M. F. Lavin (1998). ATM associates with and phospho-rylates p53: Mapping the region of interaction. Nat. Genet. 20:398-400.

    Google Scholar 

  30. R. Maya, M. Balass, S. T. Kim, D. Shkedy, J. F. Leal, O. Shifman, M. Moas, T. Buschmann, Z. Ronai, Y. Shiloh, M. B. Kastan, E. Katzir, and M. Oren (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev. 15:1067-1077.

    Google Scholar 

  31. W. S. el-Deiry, J. W. Harper, P. M. O'Connor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, and Y. Wang (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54:1169-1174.

    Google Scholar 

  32. J. W. Harper, G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805-816.

    Google Scholar 

  33. S. Matsuoka, G. Rotman, A. Ogawa, Y. Shiloh, K. Tamai, and S. J. Elledge (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. U. S. A. 97:10389-10394.

    Google Scholar 

  34. B. B. Zhou, P. Chaturvedi, K. Spring, S. P. Scott, R. A. Johanson, R. Mishra, M. R. Mattern, J. D. Winkler, and K. K. Khanna (2000). Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275:10342- 10348.

    Google Scholar 

  35. R. Melchionna, X. B. Chen, A. Blasina, and C. H. McGowan (2000). Threonine 68 is required for radiation-induced phos-phorylation and activation of Cds1. Nat. Cell Biol. 2:762-765.

    Google Scholar 

  36. J. Falck, N. Mailand, R. G. Syljuasen, J. Bartek, and J. Lukas (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842-847.

    Google Scholar 

  37. N. H. Chehab, A. Malikzay, M. Appel, and T. D. Halazonetis (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14:278-288.

    Google Scholar 

  38. S. Y. Shieh, J. Ahn, K. Tamai, Y. Taya, and C. Prives (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14:289-300.

    Google Scholar 

  39. J. Ahn, M. Urist, and C. Prives (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J. Biol. Chem. 278:20480-20489.

    Google Scholar 

  40. P. V. Jallepalli, C. Lengauer, B. Vogelstein, and F. Bunz (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J. Biol. Chem. 278:20475- 20479.

    Google Scholar 

  41. S. Saito, A. A. Goodarzi, Y. Higashimoto, Y. Noda, S. P. Lees-Miller, E. Appella, and C. W. Anderson (2002). ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J. Biol. Chem. 277:12491-12494.

    Google Scholar 

  42. P. Schar (2001). Spontaneous DNA damage, genome insta-bility, and cancer-When DNA replication escapes control. Cell 104:329-332.

    Google Scholar 

  43. R. B. Painter (1985). Altered DNA synthesis in irradiated and unirradiated ataxia-telangiectasia cells. Kroc. Found. Ser. 19:89-100.

    Google Scholar 

  44. J. P. Carney, R. S. Maser, H. Olivares, E. M. Davis, M. Le Beau, J. R. Yates, 3rd, L. Hays, W. F. Morgan, and J. H. Petrini (1998). The hMre11/hRad50 protein complex and Ni-jmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477- 486.

    Google Scholar 

  45. R. Varon, C. Vissinga, M. Platzer, K. M. Cerosaletti, K. H. Chrzanowska, K. Saar, G. Beckmann, E. Seemanova, P. R. Cooper, N. J. Nowak, M. Stumm, C. M. Weemaes, R. A. Gatti, R.K. Wilson, M. Digweed, A. Rosenthal, K. Sperling, P. Concannon, and A. Reis (1998). Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467-476.

    Google Scholar 

  46. G. S. Stewart, R. S. Maser, T. Stankovic, D. A. Bressan, M. I. Kaplan, N. G. Jaspers, A. Raams, P. J. Byrd, J. H. Petrini, and A. M. Taylor (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder [in process citation]. Cell 99:577-587.

    Google Scholar 

  47. D.S. Lim, S.T. Kim, B. Xu, R.S. Maser, J. Lin, J.H. Petrini, and M. B. Kastan (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613-617.

    Google Scholar 

  48. M. Gatei, D. Young, K. M. Cerosaletti, A. Desai-Mehta, K. Spring, S. Kozlov, M. F. Lavin, R. A. Gatti, P. Concannon, and K. Khanna (2000). ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat. Genet. 25:115-119.

    Google Scholar 

  49. S. Zhao, Y. C. Weng, S. S. Yuan, Y. T. Lin, H. C. Hsu, S. C. Lin, E. Gerbino, M. H. Song, M. Z. Zdzienicka, R. A. Gatti, J. W. Shay, Y. Ziv, Y. Shiloh, and E. Y. Lee (2000). Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405:473-477.

    Google Scholar 

  50. X. Wu, V. Ranganathan, D. S. Weisman, W. F. Heine, D. N. Ciccone, T. B. O'Neill, K. E. Crick, K. A. Pierce, W. S. Lane, G. Rathbun, D. M. Livingston, and D. T. Weaver (2000). ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405:477-482.

    Google Scholar 

  51. M. Goldberg, M. Stucki, J. Falck, D. D'Amours, D. Rahman, D. Pappin, J. Bartek, and S. P. Jackson (2003). MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952-956.

    Google Scholar 

  52. Z. Lou, C. C. Chini, K. Minter-Dykhouse, and J. Chen (2003). Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J. Biol. Chem. 278:13599-13602.

    Google Scholar 

  53. G. S. Stewart, B. Wang, C. R. Bignell, A. M. Taylor, and S. J. Elledge (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961-966.

    Google Scholar 

  54. T. O'Neill, L. Giarratani, P. Chen, L. Iyer, C. H. Lee, M. Bobiak, F. Kanai, B. B. Zhou, J. H. Chung, and G. A. Rathbun (2002). Determination of substrate motifs for hu-man Chk1 and hCds1/Chk2 by the oriented peptide library approach. J. Biol. Chem. 277:16102-16115.

    Google Scholar 

  55. Q. Liu, S. Guntuku, X. S. Cui, S. Matsuoka, D. Cortez, K. Tamai, G. Luo, S. Carattini-Rivera, F. DeMayo, A. Bradley, L. A. Donehower, and S. J. Elledge (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14:1448- 1459.

    Google Scholar 

  56. H. Takai, K. Tominaga, N. Motoyama, Y. A. Minamishima, H. Nagahama, T. Tsukiyama, K. Ikeda, K. Nakayama, M. Nakanishi, and K. Nakayama (2000). Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev. 14:1439-1447.

    Google Scholar 

  57. H. Takai, K. Naka, Y. Okada, M. Watanabe, N. Harada, S. Saito, C. W. Anderson, E. Appella, M. Nakanishi, H. Suzuki, K. Nagashima, H. Sawa, K. Ikeda, and N. Motoyama (2002). Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. Embo. J. 21:5195-5205.

    Google Scholar 

  58. A. Hirao, Y. Y. Kong, S. Matsuoka, A. Wakeham, J. Ruland, H. Yoshida, D. Liu, S. J. Elledge, and T. W. Mak (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824-1827.

    Google Scholar 

  59. J. Bartek, and J. Lukas (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421-429.

    Google Scholar 

  60. M. Gatei, K. Sloper, C. Sorensen, R. Syljuasen, J. Falck, K. Hobson, K. Savage, J. Lukas, B. B. Zhou, J. Bartek, and K. K. Khanna (2003). Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in re-sponse to ionizing radiation. J. Biol. Chem. 278:14806-14811.

    Google Scholar 

  61. D. R. Krause, J. C. Jonnalagadda, M. H. Gatei, H. H. Sillje, B. B. Zhou, E. A. Nigg, and K. Khanna (2003). Suppres-sion of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene 22:5927-5937.

    Google Scholar 

  62. C. S. Sorensen, R. G. Syljuasen, J. Falck, T. Schroeder, L. Ronnstrand, K. K. Khanna, B. B. Zhou, J. Bartek, and J. Lukas (2003). Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3:247-258.

    Google Scholar 

  63. D. W. Bell, J. M. Varley, T. E. Szydlo, D. H. Kang, D. C. Wahrer, K. E. Shannon, M. Lubratovich, S. J. Verselis, K. J. Isselbacher, J. F. Fraumeni, J. M. Birch, F. P. Li, J. E. Garber, and D. A. Haber (1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528- 2531.

    Google Scholar 

  64. N. Sodha, R. S. Houlston, R. Williams, M. A. Yuille, J. Mangion, and R. A. Eeles (2002). A robust method for detecting CHK2/RAD53 mutations in genomic DNA. Hum. Mutat. 19:173-177.

    Google Scholar 

  65. H. Meijers-Heijboer, A. van den Ouweland, J. Klijn, M. Wasielewski, A. de Snoo, R. Oldenburg, A. Hollestelle, M. Houben, E. Crepin, M. van Veghel-Plandsoen, F. Elstrodt, C. van Duijn, C. Bartels, C. Meijers, M. Schutte, L. McGuffog, D. Thompson, D. Easton, N. Sodha, S. Seal, R. Barfoot, J. Mangion, J. Chang-Claude, D. Eccles, R. Eeles, D. G. Evans, R. Houlston, V. Murday, S. Narod, T. Peretz, J. Peto, C. Phelan, H. X. Zhang, C. Szabo, P. Devilee, D. Goldgar, P. A. Futreal, K. L. Nathanson, B. Weber, N. Rahman, M. R. Stratton, and CHEK2-Breast Cancer Consortium (2002). Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 31:55-65.

    Google Scholar 

  66. P. Vahteristo, J. Bartkova, H. Eerola, K. Syrjakoski, S. Ojala, O. Kilpivaara, A. Tamminen, J. Kononen, K. Aittomaki, P. Heikkila, K. Holli, C. Blomqvist, J. Bartek, O. P. Kallioniemi, and H. Nevanlinna (2002). A CHEK2 genetic variant con-tributing to a substantial fraction of familial breast cancer. Am. J. Hum. Genet. 71:432-438.

    Google Scholar 

  67. R. Scully, and D. M. Livingston (2000). In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408:429-432.

    Google Scholar 

  68. D. Cortez, Y. Wang, J. Qin, and S. J. Elledge (1999). Re-quirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks [in process citation]. Science 286:1162-1166.

    Google Scholar 

  69. M. Gatei, S. P. Scott, I. Filippovitch, N. Soronika, M. F. Lavin, B. Weber, and K. K. Khanna (2000). Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 60:3299-3304.

    Google Scholar 

  70. J. S. Lee, K. M. Collins, A. L. Brown, C. H. Lee, and J. H. Chung (2000). hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201- 204.

    Google Scholar 

  71. J. Zhang, H. Willers, Z. Feng, J. C. Ghosh, S. Kim, D. T. Weaver, J. H. Chung, S. N. Powell, and F. Xia (2004). Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell Biol. 24:708-718.

    Google Scholar 

  72. B. Xu, A. H. O'Donnell, S. T. Kim, and M. B. Kastan (2002). Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res. 62:4588-4591.

    Google Scholar 

  73. A. D. D'Andrea (2003). The Fanconi road to cancer. Genes Dev. 17:1933-1936.

    Google Scholar 

  74. C. Timmers, T. Taniguchi, J. Hejna, C. Reifsteck, L. Lucas, D. Bruun, M. Thayer, B. Cox, S. Olson, A. D. D'Andrea, R. Moses, and M. Grompe (2001). Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell. 7:241- 248.

    Google Scholar 

  75. I. Garcia-Higuera, T. Taniguchi, S. Ganesan, M. S. Meyn, C. Timmers, J. Hejna, M. Grompe, and A. D. D'Andrea (2001). Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell. 7:249-262.

    Google Scholar 

  76. T. Taniguchi, I. Garcia-Higuera, P. R. Andreassen, R. C. Gregory, M. Grompe, and A. D. D'Andrea (2002). S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100:2414-2420.

    Google Scholar 

  77. G. Stewart, and S. J. Elledge (2002). The two faces of BRCA2, a fanctastic discovery. Mol. Cell. 10:2-4.

    Google Scholar 

  78. N. G. Howlett, T. Taniguchi, S. Olson, B. Cox, Q. Waisfisz, C. De Die-Smulders, N. Persky, M. Grompe, H. Joenje, G. Pals, H. Ikeda, E. A. Fox, and A. D. D'Andrea (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606-609.

    Google Scholar 

  79. S. Seal, R. Barfoot, H. Jayatilake, P. Smith, A. Renwick, L. Bascombe, L. McGuffog, D. G. Evans, D. Eccles, D. F. Easton, M. R. Stratton, N. Rahman, and Breast Cancer Susceptibility Collaboration (2003). Evaluation of Fanconi Anemia genes in familial breast cancer predisposition. Cancer Res. 63:8596-8599.

    Google Scholar 

  80. M. J. O'Connell, N. C. Walworth, and A. M. Carr (2000). The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10:296-303.

    Google Scholar 

  81. B. B. Zhou, and S. J. Elledge (2000). The DNA damage re-sponse: Putting checkpoints in perspective. Nature 408:433- 439.

    Google Scholar 

  82. G. Zachos, M. D. Rainey, and D. A. Gillespie (2003). Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects.Embo. J. 22:713-723.

    Google Scholar 

  83. C. Venclovas, and M. P. Thelen (2000). Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28:2481-2493.

    Google Scholar 

  84. C. Venclovas, M. E. Colvin, and M. P. Thelen (2002). Molec-ular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Protein Sci. 11:2403-2416.

    Google Scholar 

  85. L. Zou, D. Cortez, and S. J. Elledge (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16:198-208.

    Google Scholar 

  86. T. D. Wolkow, and T. Enoch (2002). Fission yeast Rad26 is a regulatory subunit of the Rad3 checkpoint kinase. Mol. Biol. Cell. 13:480-492.

    Google Scholar 

  87. S. Bao, R. S. Tibbetts, K. M. Brumbaugh, Y. Fang, D. A. Richardson, A. Ali, S. M. Chen, R. T. Abraham, and X. F. Wang (2001). ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411:969-974.

    Google Scholar 

  88. A. Emili (1998). MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell. 2:183-189.

    Google Scholar 

  89. J. E. Vialard, C. S. Gilbert, C. M. Green, and N. F. Lowndes (1998). The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. Embo. J. 17:5679-5688.

    Google Scholar 

  90. N. Foray, D. Marot, V. Randrianarison, N. D. Venezia, D. Picard, M. Perricaudet, V. Favaudon, and P. Jeggo (2002). Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol. Cell. Biol. 22:4020-4032.

    Google Scholar 

  91. O. Fernandez-Capetillo, H. T. Chen, A. Celeste, I. Ward, P. J. Romanienko, J. C. Morales, K. Naka, Z. Xia, R. D. Camerini-Otero, N. Motoyama, P. B. Carpenter, W. M. Bonner, J. Chen, and A. Nussenzweig (2002). DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol. 4:993-997.

    Google Scholar 

  92. B. Wang, S. Matsuoka, P. B. Carpenter, and S. J. Elledge (2002). 53BP1, a mediator of the DNA damage checkpoint. Science 298:1435-1438.

    Google Scholar 

  93. D.A. Hoffman, J.E. Lonstein, M.M. Morin, W. Visscher, B. S. Harris, 3rd, and J. D. Boice, Jr. (1989). Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J. Natl. Cancer. Inst. 81:1307-1312.

    Google Scholar 

  94. E. Holmberg, L. E. Holm, M. Lundell, A. Mattsson, A. Wallgren, and P. Karlsson (2001). Excess breast cancer risk and the role of parity, age at first childbirth and exposure to radiation in infancy. Br. J. Cancer 85:362-366.

    Google Scholar 

  95. E. M. John, and J. L. Kelsey (1993). Radiation and other environmental exposures and breast cancer. Epidemiol. Rev. 15:157-162.

    Google Scholar 

  96. M. Swift, P. J. Reitnauer, D. Morrell, and C. L. Chase (1987). Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med. 316:1289-1294.

    Google Scholar 

  97. M. Swift, D. Morrell, R. B. Massey, and C. L. Chase (1991). Incidence of cancer in 161 families affected by ataxia-telangiectasia [see comments]. N. Engl. J. Med. 325:1831- 1836.

    Google Scholar 

  98. J. H. Olsen, J. M. Hahnemann, A. L. Borresen-Dale, K. Brondum-Nielsen, L. Hammarstrom, R. Kleinerman, H. Kaariainen, T. Lonnqvist, R. Sankila, N. Seersholm, S. Tretli, J. Yuen, J. D. Boice, Jr, and M. Tucker (2001). Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J. Natl. Cancer. Inst. 93:121-127.

    Google Scholar 

  99. H. M. Inskip, L. J. Kinlen, A. M. Taylor, C. G. Woods, and C. F. Arlett (1999). Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br. J. Cancer 79:1304-1307.

    Google Scholar 

  100. P. Athma, R. Rappaport, and M. Swift (1996). Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet. Cytogenet. 92:130-134.

    Google Scholar 

  101. B. Geoffroy-Perez, N. Janin, K. Ossian, A. Lauge, M. F. Croquette, C. Griscelli, M. Debre, B. Bressac-de-Paillerets, A. Aurias, D. Stoppa-Lyonnet, and N. Andrieu (2001). Cancer risk in heterozygotes for ataxia-telangiectasia. Int. J. Cancer 93:288-293.

    Google Scholar 

  102. N. Janin, N. Andrieu, K. Ossian, A. Lauge, M. F. Croquette, C. Griscelli, M. Debre, B. Bressac-de-Paillerets, A. Aurias, D. Stoppa-Lyonnet (1999). Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: Haplotype study in French AT families. Br. J. Cancer 80:1042-1045.

    Google Scholar 

  103. D. F. Easton (1994). Cancer risks in A-T heterozygotes. Int. J. Radiat. Biol. 66:S177-S182.

    Google Scholar 

  104. M. G. FitzGerald, J. M. Bean, S. R. Hegde, H. Unsal, D. J. MacDonald, D. P. Harkin, D. M. Finkelstein, K. J. Isselbacher, and D. A. Haber (1997). Heterozygous ATM mutations do not contribute to early onset of breast cancer [see comments]. Nat. Genet. 15:307-310.

    Google Scholar 

  105. I. Vorechovsky, L. Luo, A. Lindblom, M. Negrini, A. D. Webster, C. M. Croce, C. M. Croce, and L. Hammarstrom (1996). ATM mutations in cancer families. Cancer Res. 56:4130-4133.

    Google Scholar 

  106. J. Chen, G. G. Birkholtz, P. Lindblom, C. Rubio, and A. Lindblom (1998). The role of ataxia-telangiectasia het-erozygotes in familial breast cancer. Cancer Res. 58:1376- 1379.

    Google Scholar 

  107. M. Shayeghi, S. Seal, J. Regan, N. Collins, R. Barfoot, N. Rahman, A. Ashton, M. Moohan, R. Wooster, R. Owen, J. M. Bliss, M. R. Stratton, and J. Yarnold (1998). Heterozy-gosity for mutations in the ataxia-telangiectasia gene is not a major cause of radiotherapy complications in breast cancer patients [in process citation]. Br. J. Cancer. 78:922-927.

    Google Scholar 

  108. J. M. Appleby, J. B. Barber, E. Levine, J. M. Varley, A. M. Taylor, T. Stankovic, J. Heighway, C. Warren, and D. Scott (1997). Absence of mutations in the ATM gene in breast cancer patients with severe responses to radiotherapy. Br. J. Cancer. 76:1546-1549.

    Google Scholar 

  109. D. P. Atencio, C. M. Iannuzzi, S. Green, R. G. Stock, J. L. Bernstein, and B. S. Rosenstein (2001). Screening breast cancer patients for ATM mutations and polymorphisms by using denaturing high-performance liquid chromatography. Environ. Mol. Mutagen 38:200-208.

    Google Scholar 

  110. R. A. Gatti, A. Tward, and P. Concannon (1999). Cancer risk in ATM heterozygotes: A model of phenotypic and mechanistic differences between missense and truncating mutations. Mol. Genet. Metab. 68:419-423.

    Google Scholar 

  111. P. Maillet, H. Bonnefoi, G. Vaudan-Vutskits, B. Pajk, T. Cufer, W. D. Foulkes, P. O. Chappuis, and A. P. Sappino (2002). Constitutional alterations of the ATM gene in early onset sporadic breast cancer. J. Med. Genet. 39:751-753.

    Google Scholar 

  112. T. Dork, R. Bendix, M. Bremer, D. Rades, K. Klopper, M. Nicke, B. Skawran, A. Hector, P. Yamini, D. Steinmann, S. Weise, M. Stuhrmann, and J. H. Karstens (2001). Spec-trum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res. 61:7608-7615.

    Google Scholar 

  113. S. S. Sommer, Z. Jiang, J. Feng, C. H. Buzin, J. Zheng, J. Longmate, M. Jung, J. Moulds, and A. Dritschilo (2003). ATM missense mutations are frequent in patients with breast cancer. Cancer Genet. Cytogenet. 145:115-120.

    Google Scholar 

  114. S. S. Sommer, C. H. Buzin, M. Jung, J. Zheng, Q. Liu, S. J. Jeong, J. Moulds, V. Q. Nguyen, J. Feng, W. P. Bennett, and A. Dritschilo (2002). Elevated frequency of ATM gene missense mutations in breast cancer relative to ethnically matched controls. Cancer Genet. Cytogenet. 134:25-32.

    Google Scholar 

  115. S. N. Teraoka, K. E. Malone, D. R. Doody, N. M. Suter, E. A. Ostrander, J. R. Daling, and P. Concannon (2001). Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92:479-487.

    Google Scholar 

  116. Y. R. Thorstenson, A. Roxas, R. Kroiss, M. A. Jenkins, K. M. Yu, T. Bachrich, D. Muhr, T. L. Wayne, G. Chu, R. W. Davis, T. M. Wagner, and P. J. Oefner (2003). Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res. 63:3325-3333.

    Google Scholar 

  117. I. Vorechovsky, L. Luo, M. J. Dyer, D. Catovsky, P. L. Amlot, J. C. Yaxley, L. Foroni, L. Hammarstrom, A. D. Webster, and M. A. Yuille (1997). Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat. Genet. 17:96-99.

    Google Scholar 

  118. M. A. Yuille, L. J. Coignet, S. M. Abraham, F. Yaqub, L. Luo, E. Matutes, V. Brito-Babapulle, I. Vorechovsky, M. J. Dyer, and D. Catovsky (1998). ATM is usually rearranged in T-cell prolymphocytic leukaemia [published erratum appears in Oncogene1998 Jun 4;16(22):2955]. Oncogene 16:789-796.

    Google Scholar 

  119. T. Stankovic, P. Weber, G. Stewart, T. Bedenham, J. Murray, P. J. Byrd, P. A. Moss, and A. M. Taylor (1999). Inactivation of ataxia-telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 353:26-29.

    Google Scholar 

  120. D. Stoppa-Lyonnet, J. Soulier, A. Lauge, H. Dastot, R. Garand, F. Sigaux, and M. H. Stern (1998). Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood 91:3920-3926.

    Google Scholar 

  121. S. P. Scott, R. Bendix, P. Chen, R. Clark, T. Dork, and M. F. Lavin (2002). Missense mutations but not allelic variants al-ter the function of ATM by dominant interference in patients with breast cancer. Proc Natl. Acad. Sci. U. S. A. 99:925-930.

    Google Scholar 

  122. K. Spring, F. Ahangari, S. P. Scott, P. Waring, D. M. Purdie, P. C. Chen, K. Hourigan, J. Ramsay, P. J. McKinnon, M. Swift, and M. F. Lavin (2002). Mice heterozygous for muta-tion in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat. Genet. 32:185-190.

    Google Scholar 

  123. R. Wooster, D. Ford, J. Mangion, B. A. Ponder, J. Peto, D. F. Easton, and M. R. Stratton (1993). Absence of linkage to the ataxia telangiectasia locus in familial breast cancer. Hum. Genet. 92:91-94.

    Google Scholar 

  124. V. Cortessis, S. Ingles, R. Millikan, A. Diep, R. A. Gatti, L. Richardson, W. D. Thompson, A. Paganini-Hill, R. S. Sparkes, and R. W. Haile (1993). Linkage analysis of DRD2, a marker linked to the ataxia-telangiectasia gene, in 64 families with premenopausal bilateral breast cancer. Cancer Res. 53:5083-5086.

    Google Scholar 

  125. T. Stankovic, A. M. Kidd, A. Sutcliffe, G. M. McGuire, P. Robinson, P. Weber, T. Bedenham, A. R. Bradwell, D. F. Easton, G. G. Lennox, N. Haites, P. J. Byrd, and A. M. Taylor (1998). ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62:334-345.

    Google Scholar 

  126. A. Broeks, J. H. Urbanus, A. N. Floore, E. C. Dahler, J. G. Klijn, E. J. Rutgers, P. Devilee, N. S. Russell, F. E. van Leeuwen, and L. J. van't Veer (2000). ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am. J. Hum. Genet. 66:494-500.

    Google Scholar 

  127. G. Chenevix-Trench, A. B. Spurdle, M. Gatei, H. Kelly, A. Marsh, X. Chen, K. Donn, M. Cummings, D. Nyholt, M. A. Jenkins, C. Scott, G. M. Pupo, T. Dork, R. Bendix, J. Kirk, K. Tucker, M. R. McCredie, J. L. Hopper, J. Sambrook, G. J. Mann, and K. K. Khanna (2002). Dominant negative ATM mutations in breast cancer families. J. Natl. Cancer.Inst 94:205-215.

    Google Scholar 

  128. J. L. Bernstein, L. Bernstein, W. D. Thompson, C. F. Lynch, K. E. Malone, S. L. Teitelbaum, J. H. Olsen, H. Anton-Culver, J. D. Boice, B. S. Rosenstein, A. L. Borresen-Dale, R. A. Gatti, P. Concannon, R. W. Haile, and WECARE Study Collaborative Group (2003). ATM variants 7271T G and IVS10-6T G among women with unilateral and bilateral breast cancer. Br. J. Cancer. 89:1513-1516.

    Google Scholar 

  129. T. Dork, R. Bendix, M. Bremer, D. Rades, K. Klopper, M. Nicke, B. Skawran, A. Hector, P. Yamini, D. Steinmann, S. Weise, M. Stuhrmann, and J. H. Karstens (1999). Frequent splicing of ATM gene in breast cancer. Am.J.Hum.Genet. 65:296.

    Google Scholar 

  130. A. B. Spurdle, J. L. Hopper, X. Chen, M. R. McCredie, G. G. Giles, B. Newman, G. Chenevix-Trench, and K. Khanna (2002). No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer. Breast. Cancer. Res. 4:R15.

    Google Scholar 

  131. P. Bretsky, C. A. Haiman, S. Gilad, J. Yahalom, A. Grossman, S. Paglin, D. Van Den Berg, L. N. Kolonel, R. Skaliter, and B. E. Henderson (2003). The relationship between twenty missense ATM variants and breast cancer risk: the Multiethnic Cohort. Cancer Epidemiol. Biomarkers Prev. 12:733-738.

    Google Scholar 

  132. S. Angele, P. Romestaing, N. Moullan, M. Vuillaume, B. Chapot, M. Friesen, W. Jongmans, D. G. Cox, P. Pisani, J. P. Gerard, and J. Hall (2003). ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer. Res. 63:8717-8725.

    Google Scholar 

  133. S. N. Teraoka, M. Telatar, S. Becker-Catania, T. Liang, S. Onengut, A. Tolun, L. Chessa, O. Sanal, E. Bernatowska, R. A. Gatti, and P. Concannon (1999). Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am. J. Hum. Genet. 64:1617-1631.

    Google Scholar 

  134. L. Izatt, J. Greenman, S. Hodgson, D. Ellis, S. Watts, G. Scott, C. Jacobs, R. Liebmann, M. J. Zvelebil, C. Mathew, and E. Solomon (1999). Identification of germline missense mutations and rare allelic variants in the ATM gene in early-onset breast cancer. Genes Chromosomes Cancer 26:286-294.

    Google Scholar 

  135. C. I. Szabo, M. Schutte, A. Broeks, J. J. Houwing-Duistermaat, Y. R. Thorstenson, F. Durocher, R. A. Oldenburg, M. Wasielewski, F. Odefrey, D. Thompson, A. N. Floore J. Kraan, J. G. Klijn, A. M. van den Ouweland, T. M. Wagner, P. Devilee, J. Simard, L. J. van't Veer, D. E. Goldgar, and H. Meijers-Heijboer (2004). Are ATM mutations 7271T→G and IVS10-6T→G really high-risk breast cancer-susceptibility alleles? Cancer Res. 64:840- 843.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, K.K., Chenevix-Trench, G. ATM and Genome Maintenance: Defining Its Role in Breast Cancer Susceptibility. J Mammary Gland Biol Neoplasia 9, 247–262 (2004). https://doi.org/10.1023/B:JOMG.0000048772.92326.a1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000048772.92326.a1

Navigation