Skip to main content

Advertisement

Log in

Acute lymphoblastic leukemia

Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis

  • Original Article
  • Published:
Leukemia Submit manuscript

Abstract

Recent developments in sequencing technologies led to the discovery of a novel form of genomic instability, termed chromothripsis. This catastrophic genomic event, involved in tumorigenesis, is characterized by tens to hundreds of simultaneously acquired locally clustered rearrangements on one chromosome. We hypothesized that leukemias developing in individuals with Ataxia Telangiectasia, who are born with two mutated copies of the ATM gene, an essential guardian of genome stability, would show a higher prevalence of chromothripsis due to the associated defect in DNA double-strand break repair. Using whole-genome sequencing, fluorescence in situ hybridization and RNA sequencing, we characterized the genomic landscape of Acute Lymphoblastic Leukemia (ALL) arising in patients with Ataxia Telangiectasia. We detected a high frequency of chromothriptic events in these tumors, specifically on acrocentric chromosomes, as compared with tumors from individuals with other types of DNA repair syndromes (27 cases total, 10 with Ataxia Telangiectasia). Our data suggest that the genomic landscape of Ataxia Telangiectasia ALL is clearly distinct from that of sporadic ALL. Mechanistically, short telomeres and compromised DNA damage response in cells of Ataxia Telangiectasia patients may be linked with frequent chromothripsis. Furthermore, we show that ATM loss is associated with increased chromothripsis prevalence in additional tumor entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144: 27–40.

    Article  CAS  Google Scholar 

  2. Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, Weischenfeldt J et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012; 148: 59–71.

    Article  CAS  Google Scholar 

  3. Korbel JO, Campbell PJ . Criteria for inference of chromothripsis in cancer genomes. Cell 2013; 152: 1226–1236.

    Article  CAS  Google Scholar 

  4. Rode A, Maass KK, Willmund KV, Lichter P, Ernst A . Chromothripsis in cancer cells, an update. Int J Cancer 2015; 138: 2322–2333.

    Article  Google Scholar 

  5. Li Y, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM, Jacobs P et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 2014; 508: 98–102.

    Article  CAS  Google Scholar 

  6. Parker H, Rose-Zerilli MJ, Larrayoz M, Clifford R, Edelmann J, Blakemore S et al. Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia. Leukemia 2016; 30: 2179–2186.

    Article  CAS  Google Scholar 

  7. Kastan MB, Lim DS . The many substrates and functions of ATM. Nat Rev Mol Cell Biol 2000; 1: 179–186.

    Article  CAS  Google Scholar 

  8. Oxford JM, Harnden DG, Parrington JM, Delhanty JD . Specific chromosome aberrations in ataxia telangiectasia. J Med Genet 1975; 12: 251–262.

    Article  CAS  Google Scholar 

  9. Morrell D, Cromartie E, Swift M . Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst 1986; 77: 89–92.

    CAS  PubMed  Google Scholar 

  10. Taylor AM, Metcalfe JA, Thick J, Mak YF . Leukemia and lymphoma in ataxia telangiectasia. Blood 1996; 87: 423–438.

    CAS  PubMed  Google Scholar 

  11. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  12. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013; 45: 1134–1140.

    Article  CAS  Google Scholar 

  13. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012; 482: 53–58.

    Article  CAS  Google Scholar 

  14. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S et al. Chromothripsis from DNA damage in micronuclei. Nature 2015; 522: 179–184.

    Article  CAS  Google Scholar 

  15. Migliore L, Coppede F, Fenech M, Thomas P . Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 2011; 26: 85–92.

    Article  CAS  Google Scholar 

  16. Remke M, Pfister S, Kox C, Toedt G, Becker N, Benner A et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood 2009; 114: 1053–1062.

    Article  CAS  Google Scholar 

  17. Lantelme E, Turinetto V, Mantovani S, Marchi A, Regazzoni S, Porcedda P et al. Analysis of secondary V(D)J rearrangements in mature, peripheral T cells of ataxia-telangiectasia heterozygotes. Lab Investig: J Tech Methods Pathol 2003; 83: 1467–1475.

    Article  Google Scholar 

  18. Lantelme E, Mantovani S, Palermo B, Campanelli R, Granziero L, Monafo V et al. Increased frequency of RAG-expressing, CD4(+)CD3(low) peripheral T lymphocytes in patients with defective responses to DNA damage. Eur J Immunol 2000; 30: 1520–1525.

    Article  CAS  Google Scholar 

  19. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet 2014; 46: 116–125.

    Article  CAS  Google Scholar 

  20. Verhagen MM, Last JI, Hogervorst FB, Smeets DF, Roeleveld N, Verheijen F et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat 2012; 33: 561–571.

    Article  CAS  Google Scholar 

  21. van Belzen MJ, Hiel JA, Weemaes CM, Gabreels FJ, van Engelen BG, Smeets DF et al. A double missense mutation in the ATM gene of a Dutch family with ataxia telangiectasia. Hum Genetics 1998; 102: 187–191.

    Article  CAS  Google Scholar 

  22. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T . Chromothripsis and Kataegis induced by telomere crisis. Cell 2015; 163: 1641–1654.

    Article  CAS  Google Scholar 

  23. Ernst A, Jones DT, Maass KK, Rode A, Deeg KI, Michael Chelliah Jebaraj B et al. Telomere dysfunction and chromothripsis. Int J Cancer 2016; 138: 2905–2914.

    Article  CAS  Google Scholar 

  24. Di Domenico EG, Romano E, Del Porto P, Ascenzioni F . Multifunctional role of ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere maintenance. BioMed Res Int 2014; 2014: 787404.

    Article  Google Scholar 

  25. Doksani Y, de Lange T . The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harbor Perspect Biol 2014; 6: a016576.

    Article  Google Scholar 

  26. Pandita TK . ATM function and telomere stability. Oncogene 2002; 21: 611–618.

    Article  CAS  Google Scholar 

  27. Metcalfe JA, Parkhill J, Campbell L, Stacey M, Biggs P, Byrd PJ et al. Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 1996; 13: 350–353.

    Article  CAS  Google Scholar 

  28. Hu J, Tepsuporn S, Meyers RM, Gostissa M, Alt FW . Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci USA 2014; 111: 10269–10274.

    Article  CAS  Google Scholar 

  29. Conrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 2010; 42: 385–391.

    Article  CAS  Google Scholar 

  30. Moreira F, Kiehl TR, So K, Ajeawung NF, Honculada C, Gould P et al. NPAS3 demonstrates features of a tumor suppressive role in driving the progression of Astrocytomas. Am J Pathol 2011; 179: 462–476.

    Article  CAS  Google Scholar 

  31. Bao BY, Lin VC, Yu CC, Yin HL, Chang TY, Lu TL et al. Genetic variants in ultraconserved regions associate with prostate cancer recurrence and survival. Sci Rep 2016; 6: 22124.

    Article  CAS  Google Scholar 

  32. Sun HT, Cheng SX, Tu Y, Li XH, Zhang S . FoxQ1 promotes glioma cells proliferation and migration by regulating NRXN3 expression. PLoS ONE 2013; 8: e55693.

    Article  CAS  Google Scholar 

  33. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    Article  CAS  Google Scholar 

  34. Edelmann J, Holzmann K, Miller F, Winkler D, Buhler A, Zenz T et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 2012; 120: 4783–4794.

    Article  CAS  Google Scholar 

  35. Stimpson KM, Sullivan LL, Kuo ME, Sullivan BA . Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS ONE 2014; 9: e92432.

    Article  Google Scholar 

  36. Shull ER, Lee Y, Nakane H, Stracker TH, Zhao J, Russell HR et al. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev 2009; 23: 171–180.

    Article  CAS  Google Scholar 

  37. Britt-Compton B, Lin TT, Ahmed G, Weston V, Jones RE, Fegan C et al. Extreme telomere erosion in ATM-mutated and 11q-deleted CLL patients is independent of disease stage. Leukemia 2012; 26: 826–830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are particularly grateful for the precious assistance of Michaela Hergt for immunofluorescence analyses, Achim Stephan for library preparation for RNA sequencing, Brigitte Schoell for M-FISH analyses, Mareike Doerrenberg for extraction of nucleic acids and David Westermann for TP53 sequencing. We would also like to express our deep gratitude to Angela Schulz, Nicolle Diessl, Laura-Jane Behl, Stephan Wolf from the Genomics & Proteomics Core Facility, DKFZ, and to Katja Beck for excellent support with the next-generation sequencing analyses. Roland Eils, Prakash Balasubramanian, Ivo Buchhalter, Daniel Hübschmann and Andreas Kloetgen are gratefully acknowledged for generous sharing of bioinformatic tools and/or help with data transfer, and Susanne Gröbner for kindly helping with mutational signature analyses. We also thank Polina Stepensky, Arndt Borkhardt, Olaf Witt and Stephan Stilgenbauer for their generous support for this study. We would like to express our special appreciation and thanks to Julia Hauer and Esmé Waanders for discussions, and to Martina Seiffert for comments on the manuscript. Finally, we would like to thank Michael Hain for excellent IT support, the DKFZ Light Microscopy Facility, and the Wilhelm Sander Stiftung for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ernst.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnaparkhe, M., Hlevnjak, M., Kolb, T. et al. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia 31, 2048–2056 (2017). https://doi.org/10.1038/leu.2017.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.55

  • Springer Nature Limited

This article is cited by

Navigation